
CHAPTER 4

Operations On Data
(Solutions to Odd-Numbered Problems)
Review Questions
1. Arithmetic operations interpret bit patterns as numbers. Logical operations inter-

pret each bit as a logical values (true or false).

3. The bit allocation can be 1. In this case, the data type normally represents a logical
value.

5. The decimal point of the number with the smaller exponent is shifted to the left
until the exponents are equal.

7. The common logical binary operations are: AND, OR, and XOR.

9. The NOT operation inverts logical values (bits): it changes true to false and false
to true.

11. The result of an OR operation is true when one or both of the operands are true.

13. An important property of the AND operator is that if one of the operands is false,
the result is false.

15. An important property of the XOR operator is that if one of the operands is true,
the result will be the inverse of the other operand.

17. The AND operator can be used to clear bits. Set the desired positions in the mask
to 0.

19. The logical shift operation is applied to a pattern that does not represent a signed
number. The arithmetic shift operation assumes that the bit pattern is a signed
number in two’s complement format. 
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Multiple-Choice Questions

Exercises
41.

43.
a.

b.

c.

d.

45.  

47.  

49. Arithmetic left shift multiplies an integer by 2. To multiply an integer by 8, we
apply the arithmetic left shift operation three times.

21. d 23. c 25. b 27. b 29. c 31. c
33. c 35. a 37. c 39. b

a. (99)16 AND (99)16 = (10011001)2 AND (10011001)2 = (10011001)2 = (99)16

b. (99)16 AND (00)16 = (10011001)2 AND (00000000)2 = 00000000)2 = (00)16

c. (99)16 AND (FF)16 = (10011001)2 AND (11111111)2 = (10011001)2 = (99)16

d. (99)16 AND (FF)16 = (11111111)2 AND (11111111)2 = (11111111)2 = (FF)16

NOT[(99)16 OR (99)16] = NOT [(10011001)2 OR (10011001)2] 
= (01100110)2 = (66)16

(99)16 OR [NOT (00)16] = (10011001)2 OR [NOT (00000000)2] 
= (10011001)2 OR (11111111)2 = (11111111)2 = (FF)16

[(99)16 AND (33)16] OR [(00)16 AND (FF)16) 
= [(10011001)2 AND (00110011)2] OR [(00000000)2 AND (11111111)2] 

= (00010001)2 OR (00000000)2 = (00010001)2 = (11)16

[(99)16 OR (33)16] AND [(00)16 OR (FF)16] 
= [(10011001)2 OR (00110011)2] AND [(00000000)2 OR (11111111)2] 

= (10111011)2 AND (11111111)2 = (10111011)2 = (BB)16

Mask = (00001111)2
Operation: Mask OR (xxxxxxxx)2 = (xxxx1111)2

Mask1= (00011111)2     Mask2 = (00000011)2
Operation: [Mask1 AND (xxxxxxxx)2] OR Mask2 = (000xxx11)2
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51.  
a. 00010011 + 00010111

b. 00010011 − 00010111 = 000010011 + (−00010111) = 00010011 + 11101001 =

c. (−00010011) + 00010111 = 11101101 + 00010111 

d. (−00010011) − 00010111 = (−00010011) + (−00010111) = 11101101 +
11101001 =

53. Addition of two integers does not create overflow if the result is in the range (−128
to +127).
a. Addition does not create overflow because (−62) + (+63) = 1 (in the range). 
b. Addition does not create overflow because (+2) + (+63) = 65 (in the range).
c. Addition does not create overflow because (−62) + (−1) = −63 (in the range). 
d. Addition does not create overflow because (+2) + (−1) = 1 (in the range).

55.  
a.

1 1 1 1 Carry Decimal
 0 0 0 1 0 0 1 1 19

+ 0 0 0 1 0 1 1 1 23
0 0 1 0 1 0 1 0 42

1 1 Carry Decimal
 0 0 0 1 0 0 1 1 19

+ 1 1 1 0 1 0 0 1 −23
1 1 1 1 1 1 0 0 −4

1 1 1 1 1 1 1 1 Carry Decimal
 1 1 1 0 1 1 0 1 −19

+ 0 0 0 1 0 1 1 1 23
0 0 0 0 0 1 0 0 4

1 1 1 1 1 Carry Decimal
 1 1 1 0 1 1 0 1 −19

+ 1 1 1 0 1 0 0 1 −23
1 1 0 1 0 1 1 0 −42

1 1 1 1 Carry Hexadecimal
0 0 0 0 0 0 0 1 0 0 1 0 1 0 1 0 012A

+ 0 0 0 0 1 1 1 0 0 0 1 0 0 1 1 1 0E27
0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0F51
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b.

Note that the result is not valid because of overflow.
c.

d.

Note that the result is not valid because of overflow
57.

a.  34.75 + 23.125 = (100010.11)2 + (10111.001)2 = 25 × (1.0001011)2 + 24 ×
(1.0111001)2. These two numbers are stored in floating-point format as shown,
but we need to remember that each number has a hidden 1 (which is not stored,
but assumed). E1 = 127 + 5 = 132 = (10000100)2 and E2 = 127 + 4 = 131 =
(10000011)2. The first few steps in UML diagram is not needed. We move to
denormalization. We denormalize the numbers by adding the hidden 1’s to the
mantissa and incrementing the exponent.

 Now both denormalized mantissas are 24 bits and include the hidden 1’s. They
should store in a location to hold all 24 bits. Each exponent is incremented. 

We align the mantissas. We increment the second exponent by 1 and shift its man-
tissa to the right once.  

1 1 1 1 Carry Hexadecimal
0 1 1 1 0 0 0 1 0 0 1 0 1 0 1 0 712A

+ 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 9E00
0 0 0 0 1 1 1 1 0 0 1 0 1 0 1 0 10F2A

1 Carry Hexadecimal
1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 8011

+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0001
1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 8012

1 1 1 1 1 Carry Hexadecimal
1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 0 E12A

+ 1 0 0 1 1 1 1 0 0 0 1 0 0 1 1 1 9E27
0 1 1 1 1 1 1 1 0 1 0 1 0 0 0 1 17F51

S E M

A 0 10000100 00010110000000000000000
B 0 10000011 01110010000000000000000

S E Denormalized M

A 0 10000101 100010110000000000000000
B 0 10000100 101110010000000000000000

S E Denormalized M

A 0 10000101 100010110000000000000000
B 0 10000101 010111001000000000000000
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Now we do sign-and-magnitude addition treating the sign and the mantissa of each
number as one integer stored in sign-and-magnitude representation. 

There is no overflow in mantissa, so we normalized. 

The mantissa is only 23 bits because there is no overflow, no rounding is needed. 

E = (10000100)2 = 132, M = 11001111 

In other words, the result is 

(1.11001111)2 × 2132−127 = (111001.111)2 = 57.875
 

b.  −12.625 + 451 =  − (1100.101)2 + (111000011)2 = −23 × (1.100101)2 + 28 ×
(1.11000011)2. These two numbers are stored in floating-point format as
shown, but we need to remember that each number has a hidden 1 (which is not
stored, but assumed). E1 = 127 + 3 = 130 = (10000010)2 and E2 = 127 + 8 = 135
= (10000111)2.

The first few steps in UML diagram is not needed. We move to denormaliza-
tion. We denormalize the numbers by adding the hidden 1’s to the mantissa and
incrementing the exponent. Now both denormalized mantissas are 24 bits and
include the hidden 1’s. They should store in a location to hold all 24 bits. Each
exponent is incremented. 

We align the mantissas. We increment the first exponent by 5 and shift its man-
tissa to the right five times.  

Now we do sign-and-magnitude addition treating the sign and the mantissa of
each number as one integer stored in sign-and-magnitude representation. 

S E Denormalized M

R 0 10000101 11100111100000000000000

S E M

R 0 10000100 1100111100000000000000

S E M

A 1 10000010 10010100000000000000000
B 0 10000111 11000011000000000000000

S E Denormalized M

A 1 10000011 110010100000000000000000
B 0 10001000 111000011000000000000000

S E Denormalized M

A 1 10001000 000001100101000000000000
B 0 10001000 111000011000000000000000

S E Denormalized M

R 0 10001000  110110110011000000000000
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There is no overflow in mantissa, so we normalized. 

The mantissa is only 23 bits because there is no overflow, no rounding is
needed. 

E = (10000111)2 = 135, M = 10110110011 

In other words, the result is 

(1.10110110011)2 × 2135−127 = (110110110.011)2 = 438.375

c. 33.1875 − 0.4375 =   (100001.0011)2 − (0.0111)2 = 25 × (1.000010011)2 − 2−2 ×
(1.11)2. These two numbers are stored in floating-point format as shown, but we
need to remember that each number has a hidden 1 (which is not stored, but
assumed). E1 = 127 + 5 = 132 = (10000100)2 and E2 = 127 + (−2) = 125 =
(01111101)2.

The first two steps in UML diagram is not needed. Since the operation is sub-
traction, we change the sing of the second number.

We denormalize the numbers by adding the hidden 1’s to the mantissa and incre-
menting the exponent. Now both denormalized mantissas are 24 bits and include
the hidden 1’s. They should store in a location to hold all 24 bits. Each exponent is
incremented. 

We align the mantissas. We increment the second exponent by 7 and shift its man-
tissa to the right seven times.  

Now we do sign-and-magnitude addition treating the sign and the mantissa of each
number as one integer stored in sign-and-magnitude representation. 

S E M

R 0 10000111 10110110011000000000000

S E M

A 0 10000100 00001001100000000000000
B 0 01111101 11000000000000000000000

S E M

A 0 10000100 00001001100000000000000
B 1 01111101 11000000000000000000000

S E Denormalized M

A 0 10000101 100001001100000000000000
B 1 01111110 111000000000000000000000

S E Denormalized M

A 0 10000101 100001001100000000000000
B 1 10000101 000000011100000000000000
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There is no overflow in mantissa, so we normalized. 

The mantissa is only 23 bits because there is no overflow, no rounding is needed.

E = (10000100)2 = 132, M = 0000011 

The result is 

(1.0000011)2 × 2132−127 = (100000.11)2 = 32.75

d. −344.3125 − 123.5625 = − (101011000.0101)2 − (1111011.1001 )2  = 28 ×
(1.010110000101)2 − 26 × (1.1110111001)2. These two numbers are stored in
floating-point format as shown, but we need to remember that each number has
a hidden 1 (which is not stored, but assumed). E1 = 127 + 8 = 135 =
(10000111)2 and E2 = 127 + 6  = 133 = (10000101)2.

The first two steps in UML diagram is not needed. Since the operation is sub-
traction, we change the sing of the second number.

We denormalize the numbers by adding the hidden 1’s to the mantissa and incre-
menting the exponent. Now both denormalized mantissas are 24 bits and include
the hidden 1’s. They should store in a location to hold all 24 bits. Each exponent is
incremented. 

We align the mantissas. We increment the second exponent by 7 and shift its man-
tissa to the right seven times.  

Now we do sign-and-magnitude addition treating the sign and the mantissa of each
number as one integer stored in sign-and-magnitude representation. 

S E Denormalized M

R 0 10000101 100000110000000000000000

S E M

R 0 10000100 00000110000000000000000

S E M

A 1 10000111 01011000010100000000000
B 0 10000101 11101110010000000000000

S E M

A 1 10000111 01011000010100000000000
B 1 10000101 11101110010000000000000

S E M

A 1 10001000 101011000010100000000000
B 1 10000110 111101110010000000000000

S E M

A 1 10001000 101011000010100000000000
B 1 10001000 001111011100100000000000
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There is no overflow in mantissa, so we normalized. 

The mantissa is only 23 bits because there is no overflow, no rounding is needed. 

E = (10000111)2 = 135, M = 11010011111 

The result is

(1.11010011111)2 × 2135−127 = (111010011.111)2 = 467.875 

59. The result is a number with all 1’s which has the value of −0. For example, if we
add number (10110101)2 in 8-bit allocation to its one’s complement (01001010)2
we obtain

 We use this fact in the Internet checksum in Chapter 6.

S E Denormalized M

R 1 10001000 111010011111000000000000

S E Denormalized M

R 1 10000111 11010011111000000000000

Decimal equivalent
1 0 1 1 0 1 0 1  −74

+ 0 1 0 0 1 0 1 0  +74
1 1 1 1 1 1 1 1 −0
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