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Abstract

The study of k-in-a-row games has produced a number of interesting results,

and one of its sub-category Connect6 proposed in 2005 has been of particular

interest. Since 2006, Connect6 has been included as one of the major com-

petition in the ICGA Computer Olympiad, and is gaining more popularity

every year.

In this thesis, we briefly review current methods applied in Connect6 and

related results. A defensive strategy is introduced along with a more strate-

gically sensitive evaluation scheme. Threat-space search is an important

algorithm applied in Connect6, some techniques for gaining more efficiency

and accuracy will be introduced. The integration of the defensive strategy

and threat-space search will also be investigated.

The combination of the defensive strategy and threat-space search is

proved to be effective, and is able to compete with other top Connect6 pro-

grams. The program Kagami, which was implemented with these methods,

won the fourth place in the 14th Computer Olympiads.
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Chapter 1

Introduction

Playing games is always considered to be one of the most significant feature of

intellectual behaviors, thus the study of games is considered to be a possible

key to the secrets of intelligence. It serves as a vehicle to conduct research

in a wide range of fields, such as cognitive science, game theory, artificial

intelligence, and so on.

Games are ideal domains for exploring the capabilities of artificial in-

telligence (AI), since they have a clear way to measure and evaluate their

performances. They are also much simpler and more well-defined than most

of the real-world problems, but not so simple as to be trivial. Many of the

techniques developed over the years in this domain have been applied to a va-

riety of different real-world applications. Although chess has long time been

called the Drosophila of AI[1], the research of other games has also provided

fruitful results.

Divergent games, are the games that are immune to retrograde analysis,

and thus search and knowledge-based methods must be used[2]. The family

of connection games, such as Connect-Four, Qubic, Go-moku, Hex, is one of

the most widely studied category of games. They are widely played around

the world, and their rules are simpler than most of the other board games,
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while retaining sufficient complexity to be a challenging and interesting game.

1.1 Connect6

Connect6 belongs to the family of k-in-a-row games. It was first proposed

by Wu and Huang in 2005[3][4], and has been included as one of the major

competitions in the ICGA Computer Olympiad since 2006.

The basic settings are the same as the game of Go, where two players play

with black and white stones alternately on a 19× 19 board. The first player

plays with black, and the second player plays with white. Apart from the

first move, which the first player places only one black stone, both players

place two stones of their own color alternately. The player to get six or

more consecutive stones in a row, column or diagonal first wins. If all the

squares on the board are filled, and neither player cannot connect, the game

is declared a draw. Figure 1.1 shows a game of Connect6, where the first

player (black) wins.

Although a 19× 19 Go board is mostly used, a 59× 59 board is recom-

mended for professional players, and computer tournaments. The current

board size used in the ICGA Computer Olympiad is 19× 19.

1.2 Goal and Motivation

Many artificial intelligence methods applied in Connect6 are largely under the

influence of Allis’s work on solving Go-Moku[5][6], where threat-space search

was proposed and applied. Wu and Huang proposed a Connect6 version of

threat-space search, and generalized it to the family of k-in-a-row games[3][7].

It became the foundation of today’s Connect6 programs, and much effort has

been made to increase the speed and accuracy. The stage between the start

8



1

2

2

3

3

4

4

5

5

6 6

7 7

8 8 9

9

1010

1111

Figure 1.1. A game of Connect6

of the game and a winning sequence found by threat-space search is where

the evaluation heuristics have more influence. Allis used proof number search

for this stage in Go-Moku, while in Connect6 most programs used αβ-search.

Connect6 is a relatively new board game, and the development of the eval-

uation heuristics is still in its infancy, therefore there are still many unknown

territories to explore.

The goal of this thesis is to introduce a defense-oriented strategy in Con-

nect6, and present a new evaluation scheme. Besides demonstrating its ca-

pabilities, we also make some efforts in improving the implementation of

threat-space search in Connect6.
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1.3 Thesis Outline

Chapter 2 reviews the current state-of-the-art in Connect6 and k-in-a-row

games, and briefly describes some known results and methods. Some pre-

liminary observations and a defensive strategy with an evaluation scheme is

proposed in Chapter 3. Chapter 4 will present threat-based strategy and

threat-space search, with discussions on the issues of improving efficiency

and accuracy in the implementation. Chapter 5 will give a conclusion and

point out some directions for further investigations.
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Chapter 2

Related Results

In this chapter we briefly describe and review past results and current meth-

ods. Section 2.1 explores the family of k-in-a-row games. Section 2.3 investi-

gates its various variations. Section 2.3 discusses the complexity of Connect6.

2.1 The Family of k-in-a-row Games

Tic-Tac-Toe is a popular game played around the world, and most people

are familiar with it. Figure 2.1 shows a game of Tic-Tac-Toe. It is played on

a 3× 3 board, by two players. One player plays with naughts and the other

plays with crosses, taking turns to place their pieces on the board. The first

player to get three of their pieces in a row, column, or diagonal wins. From

this point on, the phrase ”k-in-a-row” will mean getting k consecutive stones

in a row, column, or diagonal, unless explicitly stated otherwise.

Tic-tac-toe can be characterized as a kind of m,n,k-games, with m and

n denoting the number of rows and columns of the board, and k giving the

length of straight chains to be obtained. Therefore the game of tic-tac-toe

can be characterized as the 3,3,3-game, whereas the popular game Go-Moku
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Figure 2.1. The 3,3,3-game, Tic-Tac-Toe

is the 15,15,5-game.

A number of game-theoretic values has been obtained for m,n,k-games.

By applying the strategy stealing argument, it can be shown that the second

player cannot have a winning strategy, thus the theoretic values can only be

a win for the first player or a draw. It is discovered that the first player has a

greater advantage on larger-sized boards or with shorter chain lengths[8][9].

The trivial 1-in-a-row game is a win for the first player on any board size of

at least 1× 1. The 2-in-a-row game is a win for the first player on any board

with a size of at least 2 × 2, and the 3-in-a-row game is a win for the first

player on any board with a size larger than 3× 3[8][9].

As for 4-in-a-row game, it is shown that all m,n,4-games with m ≥ 6 and

n ≥ 5 are game-theoretic wins for the first player. The board size which 4-in-

a-row game changes its theoretic value from win to draw for the first player

lies in m,4,4-games, where the precise value of m lies between 9 and 29, both

inclusive[9]. Moving on to 5-in-a-row game, it is demonstrated by using the

Hales-Jewett pairing strategy that the second player can achieve a draw in

the 5,5,5-game[8]. Figure 2.2 provides an example of the strategy. In Figure

2.2 any possible straight chain of five squares contains two “paired” squares

indicated by a marker in the direction of the chain. The second player can

guarantee the draw by always playing the second square of the pair as soon

as the first player plays the first. It is also shown that 5-in-a-row game is
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drawn on 6 × 5 and 6 × 6 boards. Larger boards are not yet investigated.

Allis demonstrated that Go-Moku (i.e., the 15,15,5-game) is a first player

win[5][6]. Same as 4-in-a-row game, the borderline between a draw and a

win for the first player is still an open question[9].

Figure 2.2. Hales-Jewett pairing strategy for the 5,5,5-game

In 1954, Henry Oliver Pollak and Claude Elwood Shannon showed that

9-in-a-row game is drawn on an infinite board, and as a consequence on any

finite board and m-in-row game with m ≥ 9[8]. Later, Zetters demonstrated

the same result for 8-in-a-row game[10]. The two proofs use similar methods.

They both show that if the second player follows a certain strategy, the first

player can’t achieve some goal on a smaller-sized tiles, and by arranging these

tiles on the infinite-sized board, one can demonstrate that the second player

can always retain a draw.

At the present time, 6-in-a-row game and 7-in-a-row game are still open

questions. But from 8-in-a-row and onwards the second player is able to draw

the game[9].

2.2 Variants of k-in-a-row Games

Variants of k-in-a-row games have been proposed and investigated, one of

which is k-in-a-row game on higher-dimensional board, another is to play
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Table 2.1. Game values of k-in-a-row games

Game Game Value

m,n,k-games(k = 1, 2) Win for the first player

3,3,3-games(Tic-Tac-Toe) Draw

m,n,3-games(m ≥ 4, n ≥ 3) Win for the first player

m,4,4-games(m ≤ 8) Draw

m,n,4-games(m ≤ 5, n ≤ 5) Draw

m,n,4-games(m ≥ 6, n ≥ 5) Win for the first player

m,n,5-games(m ≤ 6, n ≤ 6) Draw

15,15,5-game(Go-Moku) Win for the first player

m,n,6-games Unknown

m,n,7-games Unknown

m,n,k-games(k ≥ 8) Draw

multiple number of stones on each turn.

2.2.1 Higher-Dimensional Boards

Qubic is a 4-in-a-row game played on a 4 × 4 × 4 cube. Different from

the game Connect-Four, no gravity conditions apply. In 1980 Patashink

weakly solved the game. Later, Allis and Schoo weakly solved Qubic again,

confirming Patashnik’s result that Qubic is a first-player win[11]. For higher

dimensions, we turn to the Hales-Jewett theorem[12].

The Hales-Jewett theorem is a fundamental result in the field of Ramsey

theory. An informal geometric statement of the theorem is that for any

positive integers k and c there is a number h such that if the cells of a h-

dimensional k×k×k×· · ·×k are colored with c colors, there must exist one

row, column, or diagonal of length n all of whose cells have the same color.

In other words the higher dimensional, multi-player, k-in-a-row game cannot
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end in a draw. By the strategy stealing argument, one can conclude that

if two players play alternately, then the first player has a winning strategy

when h is sufficiently large. Furthermore explorations on k-in-a-row game on

different dimensions and geometric spaces have been conducted by Solomon

and Hales[13].

2.2.2 The Connect(m, n, k, p, q) Family

In 2005, Wu and Huang introduced the Connect(m, n, k, p, q) family of k-in-a-

row games, where two players place p stones in each turn on an m×n board

except for that the first player places q stones for the first move, and the

player who gets k consecutive stones wins. Under this context, Go-Moku is a

Connect(19, 19, 5, 1, 1) game. The major difference from k-in-a-row games is

that Connect(m, n, k, p, q) has an extra parameter q which significantly in-

fluences its fairness. It is demonstrated that p = 2q is a necessary condition

for fairness, where one player always has q more stones than the other after

making each move, and initial breakaway does not favor the second player. In

particular, the game of Connect6 is the game Connect(19, 19, 6, 2, 1). Con-

nect6 is argued not to be definitely unfair, monotonically unfair, and empir-

ically unfair, but the final and formal judgement is yet to be given[3][4].

Further studies are conducted on the family class of Connect(∞,∞, k, p, p)

games. Chiang et al.[14] demonstrated that, for kdraw(p) = 11 and for

all p ≥ 3, kdraw(p) = 3p + 3d + 8 with d as a logarithmic function of p,

Connect(∞,∞, kdraw(p), p) is drawn.

2.3 The Complexity of Connect6

Connect6 is originally stated as a game played on infinite board, thus making

the state-space and game-tree complexities infinite too. But in practice,
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games are played on a 19 × 19 Go board, therefore complexity analysis is

typically done on Connect(19, 19, 6, 2, 1).

The state-space complexity of Connect(19, 19, 6, 2, 1) is about 10172, roughly

the same as that in Go. The averaged game length is 30, and the number

of choices for one move is about (300× 300/2), therefore the game-tree com-

plexity is about (300× 300/2)30 which approximates to 10140[3][4]. Table 2.2

shows the complexities of various games.

Table 2.2. Complexities of various games

Game State-space complexity Game-tree complexity

Checkers 1021 1031

Chess 1046 10123

Chinese Chess 1048 10150

Connect6 10172 10140

Connect-Four 1014 1021

Go(19× 19) 10172 10360

Go-Moku(15× 15) 10105 1070

Hex 1057 1098

Othello 1028 1058

Qubic 1030 1034

Renju(15× 15) 10105 1070

Shogi 1071 10226
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Chapter 3

A Defensive Strategy for

Connect6

A defensive strategy for Connect6 is presented in this chapter. Section 3.1

points out a significant property and some observations in Connect6. Section

3.2 investigates the influence of a stone on the board, and then an evalua-

tion scheme is proposed, and a comparison with current techniques is given.

Section 3.3 introduces a strategy based on these observations and results.

Experimental results are given in Section 3.4.

3.1 Locality in Connect6

A breakaway move is to place stones far away from the major field of battle,

where most stones have been placed. An initial breakaway move is a break-

away move made at the first move of the second player. If the first player

does not follow the second player, and continues to play near the initial stone,

it is effectively a Connect(∞,∞, 6, 2, 3) game in that local area. It is shown

that Connect(∞,∞, 6, 2, 3) is a win for the first player, therefore implying

that initial breakaway may not benefit the second player in any way, and
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might even give the first player a huge advantage[3].

From many games, it can be observed that breakaway moves do seldom

occur and are rarely beneficial for the side that applies it. An informal

explanation is that breakaway moves gives the opponent the initiative and

significant advantage, and effectively transpose the game to another unfa-

vorable Connect(m, n, k, p, q) in that local area of the board. The previous

argument concerning the initial breakaway is an example. Therefore, the

distance between the stones played in each move and those that are already

on the board can not be too large, showing that Connect6 has high locality.

Thus, despite the huge complexity of Connect6, its massive branching factor

can be effectively lowered by filtering breakaway moves (i.e. moves that are

too far from the existing stones on the board) from the candidate move list.

A natural question arises: exactly how far away from the major battle

field should a move be characterized as a breakaway move? There are not

any formal answers or statistical figures available yet.

For naming the openings, we basically follow the DIF naming system,

authored by Wen-Jing Hsu[15]. It is already known and verified that the

openings TX-H9, TX-H8, XX-J6, and I7-G9 are instant wins for black[15].

Observing these openings, it can be discovered the same characteristic of all

of them is that white distanced its stones from black in its first move. For

both XX-J6 and I7-G9, shown in Figure 3.1, the white stones are obviously

placed too far away from the black stone.

As for TX-H9 and TX-H8, Shown in Figure 3.2, although the white stones

are placed nearer to the black stone, especially TX-H9 in which both stones

are placed only with the geometric distance of
√

5 to the black stone, black

can still claim victory. Another major characteristic is that both stones

are cluttered together on the same side of the black stone. If the white

stones are more spread out on different sides of the black stone with the

same distance to limit black’s freedom, whether black is still able to win is
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Figure 3.1. The openings XX-J6 (left) and I7-G9 (right)

uncertain. This possibility makes it difficult to determine whether distance

is the key contributing factor to the loss of white in TX-H9 and TX-H8, but

it is still a significant characteristic of both openings.

From these four openings, we can observe that white doesn’t need a great

distance to turn a move into a blunder in the early stage of the game. But as

the game progresses, if the black and white stones are bonded together and

evenly spread in the main battlefield, the chances of forming threats with

the existing stones is low. Therefore, a move which is far away from the

main battlefield, may play the role of opening up a new combat area rather

than jeopardize the position, and thus such move will not be considered

as a breakaway move in the context of our previous discussion. Hence in

such conditions, the distance that characterize a breakaway move should be

increased.

In conclusion, due to the properties of breakaway moves, Connect6 has
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Figure 3.2. The openings TX-H9 (left) and TX-H8 (right).

high locality. But the question of how to characterize a breakaway move is

yet to be answered, and the answer may vary from position to position or

from stage to stage in the game.

3.2 An Evaluation Scheme

Taking the idea of locality further, we will begin by investigating the influence

of a stone on the board, then introduce a new evaluation method based on

these observations, and make a comparison to the current evaluation methods

that are applied in other Connect6 programs.
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3.2.1 Influence of a Stone

Apart from the first move, two stones are placed on the board with each

move, and these stones change the development and nature of the previous

position. What does the presence of a new stone alter?

A potential line is a line with a length of 6 on the board, with no stones or

only a single kind of stone on it. Thus, it is a potential candidate to connect

six for one of the players. If there are two kinds of stones on the line, then

it can be sure that a winning six will not occur on it. We will regard a line

which contains six consecutive stones that win the game as a winning line.

A straight forward and tactical point of view is that a stone played on

the board increases the chance of connecting six for one side, or reduces the

chance of winning for the opponent. But what is the scale or range of its

influence? Instead of viewing the board as a collection of points, we regard it

as a collection of potential lines. Therefore, the presence of a stone increases

the probability of a potential line, which contains the stone, to become a

winning line.

Hence, a stone’s influence area should be the area that consist of all the

potential lines which contains the stone. The largest possible area of influence

is made up of four lines (horizontal, vertical, and two diagonals) of length

11, with the stone in the center as depicted in Figure 3.3.

Other points which are not included in the area are by no means not

important at all. Rather, they differ from the included points by meaning.

The included points are under more direct influence of the stone, thus may

have more tactical meaning, whereas the ones that are not included are less

directly related to the stone, and may only retain some strategic importance.

Connectivity is another major issue in Connect6, since if one’s stones are

sparsely spread across the board, the chance of connecting six is low. If two

stones are close to each other, there are less points between them for the
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Figure 3.3. Influence of a stone

opponent to cut their connection. Thus, the relation between two stones de-

creases with increasing distance, and this relation is in a sense formed by the

influences of the two stones imposing on each other. It is therefore natural

to imply that the influence of a single stone decreases with increasing dis-

tance. An simple analogy of this phenomenon would be some forces of nature

such as gravity or electromagnetic force, they too decline in “influence” with

distance.

3.2.2 Evaluation of a Half-move

We are set to propose a model that will reflect the properties we observed.

Some essential questions need to be addressed first.

The influence of a stone should stop when the border or an opponent’s

stone is encountered, since it can’t make any connections with any stones

beyond them. Therefore, the length of the lines in the statement of the
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influence area should be refined to lines with a length of 11 or less, as shown

in Figure 3.4.

Figure 3.4. The influence area encountering borders or opponent stones

We will not try to take the points that are not in the influence area

into consideration, since we believe that their strategic values may vary for

different positions, and a perfect model may not exist. Even if it does exist,

it may introduce unnecessary complexities.

Earlier we made the analogy to field forces in physics, a same problem also

arises in our model, namely the n-body problem. For the sake of simplicity,

we simply assume our model acts locally. Only the influence area of a stone

or move is considered, therefore avoiding the problem which will arise when

“the influence” ripples through each point and onto the entire board.

Two stones are played in a single move in Connect6, a half-move refers

to the situation where only one stone is under consideration. Since our

observation is of a single stone, our model will be based on the evaluation of
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a half-move.

pj,b1 pj,b2 pj,b3 pj,b4 pj,b5pj,a1
pj,a2

pj,a3
pj,a4

pj,a5

Figure 3.5. Evaluation of a half-move

Suppose that the opponent is playing black, then the evaluation score for

a black stone or a half-move is given by

E = di

4∑

j=1

(

5∏

k=1

pj,ak

5∏

k=1

pj,bk
).

E is the evaluation score of the half-move, reflecting the influence it has.

i is the number of directions that have no opponent stones, and di is the

weighted value in that respect. The value j corresponds to the index of

directions to be considered, so there are 4 directions (1 horizontal, 1 ver-

tical,and 2 diagonal). pj,ak
and pj,bk

, where 1 ≤ k ≤ 5, are the states of

the points, which corresponds to the points marked in Figure 3.5 on each

respective line.

The values of pj,ak
and pj,bk

are determined in an orderly decreasing fash-

ion from near to far, i.e. from pj,a1
to pj,a5

and from pj,b1 to pj,b5. If the point

is an empty point, the value ǫ is given, and if the point is occupied by an own

stone, then a corresponding weight wk is given. The values wk decreases with

increasing k. Once the border or a white stone is encountered at a certain k,

the remaining values wk, wk+1, ..., w5 are set to 1.

Note that the values on the same line are combined by using multiplica-

tion and the four directions are combined by using addition. This reflects the

fact that connectivity has higher priority over directional liberty. Although

in some cases, directional liberty may have higher priority, especially in ear-

lier stage of the game, these cases can be addressed by applying the degree

parameter di.

24



Algorithm 1 Half-move evaluation Algorithm

procedure hmove-evaluation(position, h −move)

E ← 0

Edirectional ← 1

for j ← 1, 4 do ⊲ for four directions

for l ← a, b do ⊲ for each half of a line

for k ← 1, 5 do ⊲ for each point

if pjlk is an opponent’s stone or border then

break

else if pjlk is an empty point then

Edirectional ← Edirectional × ǫ

else if pjlk is an own stone then

Edirectional ← Edirectional × wk

end if

end for

E ← E + Edirectional

end for

end for

return E

end procedure
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A rough sketch of the entire algorithm is exhibited in Algorithm 1. All

that remains is to determine the value of each parameter. A fundamental

relation needs to be preserved: a half-move which contains occupied stones

in its influence area should not be overpassed by a half-move which only has

empty points in its influence area. Please see Figure 3.6 for a depiction. This

may occur since empty points also have a weight.

Figure 3.6. Evaluation of the triangle position in the right should be higher

than that in the left.

A simple solution would be to let a portion of the weight of a stone be

larger than the value of a line that contains only empty points. Therefore,

the relation

ǫ10 ≤ wl

must be held, where l ≤ n ≤ 5. wn is the weight that is equal to the value

of the line with only empty points.

We decided that the weight of a empty point ǫ = 2, then we use it as a
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base to determine the values of wk. From experiments and experiences, we

determined that n = 3, and w1 = 212, w2 = 211, w3 = 210, w4 = 29, w5 = 28.

The values of degree weights are determined and tuned purely from ex-

periments, which are d1 = 1.0, d2 = 1.00000181862, d3 = 1.00000363725,

d4 = 1.00000726562. The values are fairly small, due to the exponential fig-

ures of the empty point weight and stone weights, and due to their nature of

being mostly adjustments for some positions.

Figure 3.7. Example of evaluation

An example is shown in Figure 3.7, the evaluation value of is deter-

mined by

E =d3 × [(ǫ× ǫ× 1× 1× 1× ǫ× w2 × w3 × ǫ× ǫ) + (ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ)

+ (ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ) + (ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ× ǫ)]

=1.00000363725× [((1× 1× 1× 2× 2)× (2× 211 × 210 × 2× 2)) + 210 + 210 + 210].
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There is one opponent stone in the horizontal direction, thus the degree

parameter d3 is applied. Apart from the horizontal direction, there are no

stones in the vertical and diagonal directions, therefore their values are the

product of 10 empty point weights ǫ, that is 210. The value determined by

the horizontal direction is thus (1× 1× 1× 2× 2)× (2× 211 × 210 × 2× 2).

3.2.3 Comparison to Current Evaluation Techniques

The evaluation schemes used in many programs are mostly pattern-based, for

different configurations of stones on a line, a score is assigned[7] [16]. Then

the scores of the four directions are combined (mostly by addition) to make

up the evaluation score.

A

B

C

Figure 3.8. Comparison of different evaluation scheme

For example, if black places a stone at the triangle positions in the pat-

terns A, B, and C in Figure 3.8, the patterns they create are all usually

classified as a Live4 pattern, and its main characteristic is that white needs
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two stones to defend the threat. Hence, the half-moves at the triangle posi-

tions have the same value in most of current program’s evaluations.

But with our proposed evaluation scheme, the three half-moves have dif-

ferent scores. Pattern A has the highest score, pattern B is next, and pattern

C is the lowest. If the half-move haves been played, they would create the

same amount of threat. But due to the different number of empty points on

the examined directions, the evaluation values varies since empty points also

have a weight. And this reflects the fact that although they have the same

tactical meaning (threats), they are distinct in strategic context, namely

liberty or space.

Therefore, the proposed evaluation scheme is much more delicate, and

may distinguish the strategic importance of the same pattern. It is more

strategic sensitive than the traditional approaches, but retains the same tac-

tical sensitivity at the same time.

3.3 A Defensive Strategy

To defend from opponent’s attack, a way is to lower the influence of oppo-

nent’s stone on the board. A point which has a high evaluation score from

the opponent point of view, means that the opponent’s stone can impose a

large influence. Therefore, if we play at the points where the opponent has a

high evaluation score, we may cut off the connection of the opponent’s stones

and limit his liberty or space effectively.

The branching factor in Connect6 is large, due to the fact that two stones

are placed in each move, and the board is very large. Although the property

of high locality can effectively reduce the number of candidate moves, further

considerations are still called for.

We will make an assumption that the opponent has a purpose with every
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moves. If the opponent’s intention is to make some abstract connections to

other stones to produce an attacking pattern, it would be best to cut off these

connections as soon as possible. That is by “following” the opponent’s move

to wherever he goes, and cut off potentially dangerous connections, one can

minimize the chance that the opponent can make an attack. Of course, if the

opponent’s purpose is to defend, we may waste some stones on unnecessary

defense if we follow this strategy. But then again, our purpose is to make a

solid defense, thus the waste of stones is tolerable.

So we only consider the half-moves (or points) that are in the 5×5 square

with the last two stones that the opponent played in the center as candidate

half-moves. Therefore, at most 48 points or half-moves are considered. Fig-

ure 3.9 shows a position with white to move, and candidate half-moves are

marked by filled squares.

1

2

2

3

3

4

4

5

5

Figure 3.9. Candidate half-moves (white to move)

The defensive strategy consist of two phases. First, it generates a half-

move list and sorts the entries according to the value which is given by the

30



evaluation scheme proposed earlier. Then it plays the half-move with the

highest value, and do the same for the second half-move.

The overview of the proposed strategy is given in Figure 3.10. Note that

it is only a simple greedy method based on the proposed evaluation, and no

search technique of any kind is applied.

Figure 3.10. Flowchart of a defensive strategy

3.4 Experimental Results

To test how effective our defensive strategy is, we use it to play against two

famous Connect6 programs:

• NCTU6: NCTU6 is a program developed by the Internet Application
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Laboratory led by Professor I-Chen Wu at the National Chiao Tung

University. It won a gold medal in the 11th Computer Olympiad and

another gold medal in the 13th Computer Olympiad. The version we

did our experiments on is the 2006 public release version 1.0, with

playing strength set to level 3 (the maximum strength is level 5).

• X6: X6 was developed by Shih-Yuan Liou and Professor Shi-Jim Yen at

the Artificial Intelligence Lab. of the National Dong Hwa University. It

won a silver medal in the 11th Computer Olympiad and a gold medal in

the 12th Computer Olympiad. Experiments are conducted with version

1.4.0f, with playing strength set to 9 (Kill-Defend Search depth was set

to 11, and 100 seconds to timeout)

Our program was run on a machine with AMD64 3000+ and 1GB RAM

under Ubuntu Linux 9.04, kernel version 2.26.1. The opponent programs

were run on a machine with Intel Core2 Duo 1.66GHz and 1 GB RAM under

Windows XP Professional Service Pack 2. Ten games are played with each

program. Our program plays black in the first 5 games and plays white in

the last 5 games. The results are listed in Table 3.1 and 3.2. In the tables,

D, W, and L, means we draw, win and lose, respectively. Game length is

the number of moves that are played. Although there are still empty points

available on the board, we declare the game drawn around move 120, since

the space left on the board is insufficient for either side to get a six.

Table 3.1. Results of our defensive strategy against NCTU6 (level3)

Game 1 2 3 4 5 6 7 8 9 10

Result D D D D D D D D D D

Game Length 121 120 119 124 120 120 123 121 120 123

We can see that our program can draw perfectly against NCTU6 (level3).

Our program can draw 60% of the games against X6 in its full power without
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Table 3.2. Results of our defensive strategy against X6

Game 1 2 3 4 5 6 7 8 9 10

Result L D D D L L D D D L

Game Length 31 121 123 131 47 18 118 128 120 34

using any kind of search, showing that our defensive strategy is very effective.

However, it still loses 40% of the games, so there is still room for further

improvement. Some selected games are shown in Appendix B.
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Chapter 4

Threat-Space Search

Threat-space search is an important method in Connect6. Section 4.1 gives

an introduction to the concept of threats in Connect6. Threat-space search

is presented in section 4.2. Some implementation techniques we applied is

presented in Section 4.3. Section 4.4 combines it with the defensive strategy

proposed earlier. Finally, an analysis of the experimental results is presented

in Section 4.5.

4.1 Threat-Based Strategy

In Connect6, a player is said to have t threats, if and only if the opponent

needs to place t stones to prevent the player to connect six and win the

game[3].

In Figure 4.1, pattern A is an example of one threat, pattern B is an

example of two threats or double threats, and pattern C is an example of

three threats. Therefore, white needs at least one stone to stop the threat

imposed in pattern A, and two stones to defend the threat in pattern B. But

in pattern C, white needs at least three stones to stop black from winning.
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A

B

C

Figure 4.1. Example of threats in Connect 6

Since a player can only place two stones on each move, white cannot stop

black from connecting six, therefore loses the game. Hence, the winning

strategy in Connect6 is to have at least three threats.

4.2 Threat-space Search

Threat-space search was first proposed by Allis[6], and it was used as an

evaluation function accompanying proof number search to solve Go-Moku.

The main idea of threat-space search is similar to that of quiescence search, in

which only forced moves are extended and explored. In Connect6, the forced

moves are the moves that can create at least a threat. The class of two

threats is of special attention since it forces the opponent to use both stones

to defend, depriving him of the opportunity to create attacking chances or

to carry out strategic ideas of his own. In some positions there exists a series
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of two threats that leads to a three or more threats. Therefore one can claim

victory if such a series is found.

Although the branching factor is significantly lower than the usual uni-

form search, it is still undesirable to explore every possible moves. Therefore,

a way to simplify and lower the complexity of threat-space search is not to

consider the defensive moves separately, but to consider them all at the once.

Conservative defense is to play all defensive moves at the same time. An ex-

ample is shown in Figure 4.2.

11 1 1

Figure 4.2. Conservative defense

Conservative defense effectively transforms threat-space search into a sin-

gle agent search. Since for every threat pattern, all possible defensive moves

are played at the same time, therefore a pattern combined with its respective

defensive moves can be combined into a single pre-defined pattern.

However, by applying conservative defense, the defense side is presumed

to play all possible defenses at the same time, and thus more than two stones

could be placed on each move. In Figure 4.2, the white’s conservative defense

plays four stones. Therefore, the set of solutions found by the threat-space

search that applied conservative defense can only be a subset of the set of

true solutions, since the extra defense stones can cause an early search failure.

In some variations, the forcing series consists of the class of two threats

mixed with the class of one theat. But we only consider the series that

contains two or more threats for the sake of simplicity. Hence the move

generation procedure only generates the moves that can create two or more

threats. Algorithm 2 sketches the idea of a conventional threat-space search.
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Algorithm 2 Threat Space Search Algorithm

procedure Threat-Space-Search(attacker)

if defender has a win or a threat then

return FAIL

end if

if own-side can connect six or create 3 threats then

return SUCCESS

end if

Movegen(list)

if list is empty then

return FAIL

end if

result← FAIL

for Every move in list do

Move()

result← Threat-Space-Search(attacker)

Undo()

if result = SUCCESS then

return SUCCESS

end if

end for

return FAIL

end procedure
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4.3 Implementation Issues

Both accuracy and efficiency are of utmost importance in the implementation

of threat-space search. A quick method of identifying whether a move creates

a threat is applied. The sliding window algorithm is used for defining the

number of threats in a pattern, and the defending moves can also be defined

from it. As for efficiency, we implement a pattern table to store the threat

number of every pattern.

4.3.1 Defining Threats in Linear Patterns

It is essential to correctly decide the number of threats in a pattern, since the

correctness of threat-space search depends upon it. A formal way of defining

a pattern’s threat is to apply the sliding window algorithm[3][7], as shown in

Algorithm 3.

Algorithm 3 Sliding Window Algorithm

procedure Sliding-Window(lpattern)

for slide window on lpattern left to right do ⊲ window is of size 6

if full with attacker stones then

threat←∞

break

else if no marked points or defender and attacker stones≥ 4 then

mark all empty squares

threat← threat + 1

end if

end for

return threat

end procedure

The window is essentially a potential line to connect six. If window is
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full with the attacker’s stones, it means that the attacker has connected six

and won, therefore we define the threat number to be ∞ in this situation.

The marking of the empty points in Algorithm 3 makes sure that a threat is

not counted twice due to overlapping.

Figure 4.3. Example of Sliding Window Algorithm

Figure 4.3 is an example of the algorithm being applied. The windows

that increase the number of threats are represented by arrow lines. In this

example, the pattern is a two threat pattern. The triangle positions are the

empty points that are marked in the first window, and the squares are the

ones that are marked in the second window.

4.3.2 Finding Defensive Moves

The definition of defensive move is also of importance. Apart from correct-

ness, since conservative defense is applied, the accuracy of the search is also

affected. Therefore, there is also a need for formally defining the defensive

moves of a linear pattern.

Figure 4.4. Defining defensive moves by sliding window algorithm

In the sliding window algorithm, all empty points in a window are marked
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if the window contains at least 4 stones of the attacker. These empty points

can also be regarded as the points to defend, since if the defender can place

a stone in one of those empty points, the defender can liquidate the threat,

and stop the attacker from winning. Hence, by applying the sliding window

algorithm, defensive moves can also be defined. Figure 4.4 is an example

where the algorithm is applied to a Live4 pattern. Again, the arrow lines

indicate the windows that threats are counted. In this example, there are

two threats. The points that are marked with a triangle are the empty

points that are marked during counting. Notice that they also correspond to

the defending points mentioned earlier in Figure 4.2. Therefore the marked

empty points can also be regarded as defensive moves.

Figure 4.5. Redundant defensive moves: Live5 pattern

But some complications arise as well. The main downside of conservative

defensive moves is that the number of defender’s stones grows rapidly, since

it plays all possible defensive moves at the same time. By the sliding window

algorithm, some patterns may be “over-protected”, i.e. some defensive moves

are redundant. This kind of redundancy may severely impact the accuracy

of the search, and cause the search to miss some winning series.

Figure 4.5 displays a Live5 pattern in which one such redundancy occurs.

The marked triangle and squares are the defensive moves decided by the

algorithm. But the triangle-marked move is not necessary, it is even not a

valid defensive move. No matter which of the points marked with a square

is combined with it, it won’t be sufficient to defend the threat.

Another example is given in Figure 4.6. The pattern is a Dead4, and
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has only one threat. The points marked with a triangle are the defensive

moves, and again the defensive move between the white and black stone is

redundant. Another problem is that point A is also a valid defensive move,

but it is excluded.

A

Figure 4.6. Redundant defensive moves: Dead4 pattern

Notice that if we slide the window from right to left, instead of from left

to right, the defensive moves would be derived correctly as shown in Figure

4.7.

Figure 4.7. Reverse slide window: Dead4 pattern

It is clear that the problem is caused by the fact that the window slides

only in one direction. Therefore, a simple solution would be to slide the

window twice, that is, once in each direction, and the empty points that are

marked twice are the essential defensive moves. Algorithm 4 describes this

simple solution.

Even with the revision, it is still not a hundred percent accurate, since

there are still corrections to be made. For example, the defensive move A in

Figure 4.6 will still be eluded. But these kinds of patterns are few and can

be treated as special cases.

An effort of enhancement is made to increase the accuracy of the search.

We always play the inner defensive moves, and the outer defensive moves are

played under certain conditions. Similar methods are also applied in some of
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Algorithm 4 Defensive Sliding Window Algorithm

procedure Defensive-Slide-Window(lpattern)

for slide window on lpattern left to right do ⊲ window is of size 6

if no marked points or defender and attacker stones≥ 4 then

for all empty − pointi in window do

mcounteri ← mcounteri + 1

end for

end if

end for

for slide window on lpattern right to left do

if no marked points or defender and attacker stones≥ 4 then

for all empty − pointi in window do

mcounteri ← mcounteri + 1

end for

end if

end for

end procedure ⊲ The output are the points with mcounteri ≥ 2
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Figure 4.8. Outer defensive moves

today’s Connect6 programs[16]. The points marked with a triangle are the

outer defensive moves in Figure 4.8. The outer defensive moves are played

only if there are two or more attacking stones in the other three directions.

The rationale is that it is better to leave less room for the opponent if

possible, and playing the outer defensive moves means leaving more space for

the attacker. Therefore, the condition specified earlier reflects the assumption

that outer defensive moves are played only if the opponent may have the

chance to achieve multiple goals.

4.3.3 Linear Pattern Table

A pattern table is applied in our implementation of threat-space search in

order to save computing time. Each entry in the table contains a key and

the number of threats. The defensive moves are not saved in the table, and

are computed during run-time. All possible configurations of stones on a line

of length 11 are pre-processed, and the numbers of threats of these patterns

are stored.

Full hashing is used, the hash function maps each configuration into a

base-3 number ranging from 0 to 311 − 1 acting as a hash key. The weights

of the corresponding positions on the line are shown in Figure 4.9.

If a point is empty, its value is 0. If a point has a white stone, its value is

1, and if a point has a black stone, its value is 2. The point value is multiplied

by its respective positional weight and then all weighted values are summed
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30 31 32 33 34 35 36 37 38 39 310

Figure 4.9. Positional weights of hash function

up to get the hash key. Borders are treated as the opponent’s stones.

30 31 32 33 34 35 36 37 38 39 310

2 0 0 2 2 0 0 1 0 0 0

Figure 4.10. Example of hash key

An example is given in Figure 4.10. The positional weights are given

above the pattern, and the respective weights of the stone or empty point

are shown below. Hence the hash key is calculated as follows:

HashKey = 2× 30 + 2× 33 + 2× 34 + 1× 37.

4.3.4 Combining Information

The pattern table is applied to retrieve the number of threats a stone can

create in one direction. Since two stones are played in a single move, possible

errors may occur when the two stones are placed on a single line, for they

both may “contribute” to the same threat pattern. Thus the threat may be

erroneously counted twice.

An example is pattern A in Figure 4.11, for the stones a and b they both

retrieve a threat count of 1, therefore a move consists of stones a and b will

be wrongly interpreted as a move that creates two threats if we only simply

add up the numbers of threats. Pattern B is another example, which the

pattern will be interpreted as a four threats.
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B

a b

A

a b

Figure 4.11. Errors when two stones align

A simple scheme may resolve the problem:

1. If both stones are not on the same line, simply add the two numbers

of threats up.

2. If both stones are on the same line, and there are opposing stones

between them, add the two numbers of threats together.

3. If both stones are on the same line, but without opposing stones be-

tween them, then

(a) take only half of their threat sum into account, if their distance is

less than or equal to 6.

(b) subtract one from the sum of their threats, if their distance is

between 7 and 11, inclusive.

(c) take the sum of their threats, if their distance is 12 or more.
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If both stones are not on the same line or there are opposing stones

between them, the threats they create are independent, hence the sum of

their threats are the threats created by this full move. The correctness of the

sum of threats will only be affected if it will lead to a wrong interpretation

of one threat and two threats. If the sum of the threats is greater than or

equal to 3, like pattern B in Figure 4.11, it won’t matter if it is wrong, since

this kind of threat greater than 3 will end the game. Therefore, we only

need to deal with the patterns which the sum of the threats is 2, because if

it is wrongly computed as a two threats, and in reality it is a single threat,

the opponent actually won’t be forced to move in defense, and thus it may

mislead the search.

A

a b

B

a b

C

a b

Figure 4.12. Example patterns for the correction scheme

Patterns A, B, and C in Figure 4.12 are examples of the above 3 cases (a),

(b), and (c). Suppose the move consists of the stones a and b. In pattern A,

the distance between a and b is 2, which is less than 6, and from the pattern

table, both of them have two threats. By the correction scheme, only half
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of their threat sum is set to be the pattern’s threat number , that is 2. For

pattern B, the distance between a and b is 9, which is between 7 and 11,

and from the table we can get that both of them are single threat, thus the

sum of threats is 2. By the correction scheme, we need to subtract 1 from

the sum, and thus the pattern’s threat number is 1. Finally, the distance

between a and b in pattern C is 12, and their individual numbers of threats

are 2, making the threat sum 4. By the correction scheme, the threat sum is

the pattern’s threat number, which is 4.

4.4 Combining Search with Defensive Strat-

egy

There is still a certain percentage of the positions that the static defensive

strategy proposed in the previous chapter will fail. No matter how fine the

parameters are tuned, due to inaccuracies in the model or any other reason,

these kinds of positions may always exist.

Another drawback of only applying the defensive strategy is that, unless

the opponent blunders badly, one can never win a game, even though there

may exist a winning move.

Therefore, to address these problems, the combination of the defensive

strategy and a threat-space search is proposed as a solution. Please see

Figure 4.13 for a depiction.

A defensive move is always derived according to the defensive strategy,

and it is verified by the threat-space search. If the verification fails, and the

opponent has an immediate threat to win, another defensive move is chosen

and verified again until it can defend the opponent’s threat or the number of

alternative moves exceeds a threshold value. If no effective defensive move

can be found, then the last defensive move is set to be the move decided by
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Figure 4.13. Defensive strategy combined with threat-space search
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the defensive strategy.

Finally an offensive threat-space search is to be carried out. If there is a

winning move, then the winning move is played, else the defensive move is

played. Note that we still don’t attempt to create any attacking opportunities

or winning threats.

The only situation to attack is that a winning sequence is found by the

threat-space search, whereas victory is sure to come. The threat-space search

mostly acts as a verifier to make up for the weakness of the static defensive

strategy.

The defensive moves are ordered in decreasing order according to the

scores given by the evaluation scheme given in the previous chapter, and at

most 50 defensive moves are considered.

Of course this is not an optimal arrangement of the two modules, since

it would be better to do the winning-attack search first. But before starting

the search for a winning attack sequence, a check is needed to be performed

first to make sure that the opponent doesn’t have a winning threat in the

current position. This essentially splits the defensive part of the architecture

into two parts, with the attacking module in the middle, and thus produces

some complications. Since our purpose is to experiment the validity of the

proposed strategy, and to verify the performance enhancement when it is

combined with a threat-space search, we will avoid such complications and

stick with this simple architecture shown in Figure 4.13.

4.5 Experimental Results

Using the ideas mentioned in this chapter, we developed a program to play

against the following two programs:

• X6: The program was developed by Shih-Yuan Liou and Professor
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Shi-Jim Yen. It was introduced in the previous chapter. Experiments

are conducted with version 1.4.0f, with playing strength set to 9 (Kill-

Defend Search depth was set to 11, and 100 seconds to timeout)

• MeinStein: The program was written by Theo van der Storm. Mr.

van der Storm passed away in January 2009, and it was subsequently

maintained by Jan Krabbenbos. It won a silver medal in the 12th

Computer Olympiad, and another in the 14th Computer Olympiad.

After the 14th Computer Olympiad, the source code was released to

the public domain in memory of Mr. van der Storm. The program was

written in Java, and incorporated techniques such as αβ-search and

quiescence search.

Our program was run on a machine with AMD64 3000+ and 1GB of RAM

under Ubuntu Linux 9.04, kernel version 2.26.1. The opponent programs

were run on a machine with Intel Core2 Duo 1.66GHz and 1 GB RAM under

Windows XP Professional Service Pack 2. Ten games were played with X6, 5

with black and 5 with white. Ten games were played against MeinStein also,

but against five different settings, with both colors against each setting.

The results are listed in Table 4.1 and 4.2, where the Re-search entry

is the number of defensive moves in the game that fail to defend and need

to do another full defensive search. The number of candidates tried in each

full defense search are shown in the next row. Only the moves that succeed

to defend and are generated by the full defensive search are counted. The

maximum number of alternative defensive moves tried by the full defensive

search is 50. The alternative defensive move list is sorted according to the

evaluation score given by the evaluation scheme presented in Chapter 3. In

the result entry, D, W, and L, means we draw, win and lose, respectively.

It can be observed that our program can now perfectly draw against X6.

In Table 4.1, only three out of ten games needs to do a re-search, and can
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Table 4.1. Results of our defensive strategy combined with threat-space

search against X6

Game 1 2 3 4 5 6 7 8 9 10

Result D D D D D D D D D D

Re-Search 0 0 0 1 0 0 0 1 2 0

Candidates 0 0 0 2 0 0 0 6 7,3 0

Game Length 121 119 123 121 119 123 124 126 124 120

Table 4.2. Results of our defensive strategy combined with threat-space

search against MeinStein

Game 1 2 3 4 5 6 7 8 9 10

Result W L W L L W W W L W

search depth 5 5 4 4 6 6 5 5 5 5

quiescence 1 1 0 0 1 1 0 0 1 1

cutoff time 70 70 70 70 70 70 70 70 80 80

Re-Search 3 1 6 1 1 2 2 3 1 3

Candidates 6 ,6,4 1 6,6 5 1 6,8 2,6 6,6,4 1 6,6,4

Game Length 52 14 51 58 16 63 81 54 16 54

find an effective defensive move without more than 7 alternative moves.

The search depth row specifies the αβ-search depth, the quiescence spec-

ifies the depth of quiscience search, and the measure of cutoff time is in

seconds of MeinStein. Our program won 60% of the games, while MeinStein

only won 40%, showing that our program is slightly superior. Although al-

most every game needs a re-search, the effective defensive moves are still

found by examining no more than 7 alternative candidates.

Therefore, from these two experiments, it can be seen that our defensive

strategy can be effectively enhanced by combining with threat-space search,
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and this combination is able to compete with today’s top programs. In

Appendix B, we show some selected games in the experiments.
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Chapter 5

Conclusions and Further

Development

5.1 Conclusions

Connect6 is a relatively new game, and there is still a lot to be investigated

and discovered. It has a huge complexity comparable to Go, making it in-

teresting and challenging. Although techniques inspired from other games

such as Go-Moku, or some standard techniques such as αβ-search work well

in Connect6, there is still a large room for innovation and improvement es-

pecially in the realms of strategy.

In this thesis, we introduce a defensive strategy, with it a whole new eval-

uation scheme is proposed. The defensive strategy takes advantage of the

property of locality in Connect6, and effectively reduces the huge branching

factor in the game tree. The evaluation scheme is much more strategic sensi-

tive compared to traditional evaluation methods, therefore is able to classify

the value of a move into more detailed hierarchies. It is able to effectively

reduce the opponent’s attacking chances, and draw against some formidable
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opponents with just a simple greedy paradigm without any search algorithm.

Although the defensive strategy is effective, it is far from perfect. Threat-

space search is combined to complement some of its weaknesses. Since threat-

space search is used as a verifier, efficiency and accuracy have the utmost

importance. We propose a method to use the sliding window algorithm to

identify defensive moves and an enhancement to increase accuracy. A pattern

table is implemented to increase the efficiency of the search. Furthermore,

it can be applied to arbitrary board sizes. By integrating the threat-space

search with the defensive strategy, it is demonstrated that the overall perfor-

mance is effectively increased.

5.2 Further Development

The strategies and methods introduced in this thesis have high potential for

further improvement.

• An attack strategy based on similar methods is yet to be explored. The

proposed architecture can only win if victory is certain to come, i.e., it

won’t make any attempt to win.

• Consider a global evaluation based on these methods, making it appli-

cable to search algorithm such as αβ-search. Investigate how to balance

between attack and defence. Knowing when to attack and when to de-

fend is the key to strategic understanding.

• Enhance threat-space search even further. Investigate the possibility of

an efficient full threat-space search, and effectively mix single threats

into the search sequence.
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Appendix A

Kagami at the 14th Computer

Olympiad

The Computer Olympiad is a multi-game event, and all the participants

are computer programs. The Olympiad was proposed by David Levy, and

he also organised the first Olympiad in London in 1989. Connect6 became

a tournament item in 2006. The 14th Computer Olympiad was held in

Pamplona, Spain, May 2009. In the Connect6 tournament each program

must complete its moves for one game in 30 minutes.

Table A.1. 14th Computer Olympiad Connect6 Tournament Results

Standing Program

1 Bit

2 MeinStein

3 Bit2

4 Kagami

5 Kavalan

6 Nomi6

Kagami, developed by the author, is a program based on the proposed
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defensive strategy. Threat-space search and a simple null-move scheme are

also integrated. Kagami entered the 14th Olympiad with the purpose of

testing the effectiveness of these techniques in tournament situations.

Six programs attended the tournament of Connect6 and Kagami finished

fourth. Kagami is significantly faster than most of the programs, and even

manages to draw against the silver medalist MeinStein and scores a win from

the bronze medalist Bit2. Figures A.1 and A.2 are two of the games played

in the tournament by Kagami.
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Figure A.1. Kagami (white) vs. MeinStein (black), game drawn.
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Appendix B

Selected Games

Here we present 8 selected games from the experiments of Chapters 3 and 4.

The first four games shown in Figures B.1 to B.4 are from the experiments

of Chapter 3. The first two games are against NCTU6, and the next two

games are against X6.

The last four games shown in Figures B.5 to B.8 are from the experiments

of Chapter 4. The first two games are against X6, and the next two games

are against MeinStein.
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Figure B.1. Defensive Strategy (white) vs. NCTU6 (black), game drawn.
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Figure B.5. Defensive Strategy combined with Threat Space Search (black)

vs. X6 (white), game drawn.
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Figure B.6. Defensive Strategy combined with Threat Space Search (white)

vs. X6 (black), game drawn.
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Figure B.7. Defensive Strategy combined with Threat Space Search (white)

vs. MeinStein (black), white wins.
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Figure B.8. Defensive Strategy combined with Threat Space Search (white)

vs. MeinStein (black), white wins.
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