

國立臺灣師範大學資訊工程研究所

博士論文

指導教授：林順喜 博士

較高維度演繹競局問題最佳演算法之設計與分析

The Design and Analysis of Optimal Algorithms

for Deductive Games with Higher Dimensions

研究生：黃立德 撰

中華民國九十八年七月

摘要

隨著眾多領域中最佳化問題的逐步探索，發現許多重要的問題都能被轉換成

演繹競局問題(deductive game)的模型，例如編碼理論(coding theory)、電路測試

(circuit testing)、密碼系統破解(differential cryptanalysis)、附加條件搜尋(additive

search problem)等問題。換言之，在演繹競局問題上的研究將使其他相關領域問

題的求解露出希望曙光，因此發展有效解決演繹競局問題的方法變得不容遲緩。

在過去數十年間，有許多針對演繹競局問題的研究產生。Mastermind 與 AB

game(或稱為 Bulls and Cow)是最有名的兩種演繹競局問題，知名的電腦科學家

Donald E. Knuth 在 1976 年於論文中介紹此二者並針對 Mastermind 做相關研究。

在本論文中，我們提出一系列理論剪裁(theoretical-pruning)的最佳化方法與數學

證明來解決這兩種問題。

在運用這些新方法到欲解決的問題後，我們得到下列新的成果：

(1) 我們提出一個適用於各種演繹競局問題的 admissible heuristic。同時，我

們根據此 admissible heuristic，提出一個更有效率的演算法來解決

Mastermind，最後亦得到 Mastermind 在平均狀況下的最佳策略。

(2) 針對 AB game，我們提出一個更精緻的剪裁演算法(pruning algorithm)來

處理它。很幸運地，最後我們得到 AB game 在平均狀況下的最佳策略且

其平均猜測次數為 5.213。

(3) 我們針對在最差狀況下 3×n AB games 的最佳策略做理論性的分析。最

後我們成功地導出一個計算最差狀況下的最佳猜測次數之公式。

(4) 我們研究一個 AB game 的變型，稱為容許一次錯誤回應之 AB game。

最終我們求得其最佳猜測次數為 8。

關鍵字：AB game、分支界定法、演繹競局問題、競局樹、Mastermind、最佳策

略、搜尋演算法、理論剪裁、錯誤回應。

誌謝

轉眼間即將結束博士班的學習生涯，在這四年的時光中，我很感謝指導教授

林順喜博士的諄諄教誨與論文指導，使我對學術研究有更直接、更深刻的體認，

過程中亦獲益匪淺。除了研究上的指導，學生對老師治學與做事嚴謹的態度及原

則深有體會，亦為學生個人做事所效法之準則。

感謝口試委員許舜欽教授、葉耀明教授、吳毅成教授、徐讚昇教授、趙坤茂

教授與陳善泰教授、對學生研究成果的肯定，並提出諸多寶貴的指正與建議，使

整個研究與論文品質能更趨於完善。另外也感謝陳世旺教授、黃文吉教授與陳柏

琳教授於論文計畫口試提出的建議與教導，使得論文整體架構能更加完整。另外

要特別謝謝陳善泰教授在研究初始階段的指導與幫忙，其對研究執著認真的態

度，是學生研究路途上的標竿。

感謝我們研究群中所有學長與學弟在研究上的建議與幫忙，尤其特別感謝士

傑學長與雲青在研究上提供的諸多見解與協助。最後也感謝聖群、俊廷、信翰、

傑淳與昱臣在口試事務上的幫忙，使口試能順利完滿結束。

最重要的就是感謝我的家人在背後默默的支持，使我可以專心的從事研究，

並順利完成這份論文。尤其感謝太太麗華在精神上的鼓勵支持與實際上的協助，

還有我們家小寶貝彧宸天真笑容的陪伴，此為督促我持續努力的最佳動力。

其他尚有許多人在無形中對此研究提供諸多協助。在此一併感謝。最後懷著

感恩的心結束博士班生涯，期許自己未來在職場上能更加努力。

The Design and Analysis of Optimal Algorithms for Deductive Games

with Higher Dimensions

A dissertation proposed

by

Li-Te Huang

to

the Department of Computer Science

and Information Engineering

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

National Taiwan Normal University

Taipei, Taiwan, R.O.C.

2009

Abstract

With the increasing exploration of optimization problems in numerous fields,

many critical issues, such as coding theory, circuit testing, differential cryptanalysis,

and additive search problem, can be modeled as deductive games. In other words, the

research of these games has led to the hope that the fruitful solutions of problems in

related areas may be obtained. Thus, it becomes urgent to develop efficient

mechanisms for deductive games.

Over the last few decades, considerable concern has arisen in solving a number of

deductive games. Mastermind and AB game (or “Bulls and Cows”), which were

introduced by the famous scientist, Donald E. Knuth, in 1976, are the most

well-known ones. In this dissertation, we aim to present a series of theoretical-pruning

optimization approaches and mathematical proofs to solve both of the two.

As a result of applying these novel methods, the following new results have been
obtained.

(1) An admissible heuristic for deductive games is presented. Meanwhile, a

more efficient algorithm based on it is introduced to solve Mastermind and

an alternative optimal strategy in the expected case is gained eventually.

(2) A refined pruning algorithm is demonstrated to address AB game.

Fortunately, an optimal strategy for AB game in the expected case is

acquired finally and its expected number of queries is 5.213.

(3) Analyses of playing 3×n AB games in the worst case optimally are

conducted. Furthermore, a worthwhile formula for calculating the optimal

numbers of queries in the worst case is derived successfully.

(4) A variation of AB game, AB game with an unreliable response, is surveyed.

Finally, an exact bound of the number of queries for the game is achieved

and its value is 8.

Keywords: AB game, branch-and-bound, deductive game, game tree, Mastermind,

optimal strategy, search algorithm, theoretical pruning, unreliable response.

Contents

List of Figures

List of Tables

Chapter 1 Introduction ..1

1.1 Deductive Games ..1

1.1.1 Discussed Categories of Deductive Games ..1

1.1.1.1 The Family of Mastermind.. 2

1.1.1.2 The Family of AB game.. 3

1.1.1.3 Deductive Games with Unreliable Responses... 4

1.1.2 Search Space of Discussed Deductive Games ..4

1.2 The Classification of Proposed Algorithms...6

1.2.1 Computer-aided Proof ..6

1.2.2 Branch-and-bound Algorithm...6

1.2.3 Approximate algorithm...7

1.2.4 Theoretical pruning...8

1.3 Preliminaries of Related Work ..9

1.4 Research History of Deductive Games..11

1.5 Terminologies of Deductive Games ..13

1.6 Organization of the Dissertation..16

Chapter 2 Depth-First Backtracking Algorithm with Branch-and-Bound Pruning18

2.1 Introduction ...18

2.2 The Depth-first Backtracking Algorithm with Branch-and-Bound Pruning........................19

2.2.1 The Framework of DBB ...20

2.2.2 DBB for Mastermind in the Expected Case..22

I

2.2.2.1 DBB for Mastermind .. 22

2.2.2.2 The Admissible Heuristic for Deductive Games... 23

2.3 Experimental Results...26

2.4 Chapter Conclusion ...28

Chapter 3 Refined Branch-and-Bound Algorithm with Speed-up Techniques.........................29

3.1 Introduction ...30

3.2 A Refined Branch-and-Bound Algorithm with Speed-up Techniques31

3.2.1 The Fundamental Framework in Terms of Branch-and-Bound Pruning31

3.2.2 The State-of-the-Art Techniques ..35

3.2.2.1 Technique 1: Incremental Updates of the Lower Bounds ... 35

3.2.2.2 Technique 2: Earlier Terminations.. 37

3.2.2.3 Technique 3: Reductions of Equivalent Queries ... 41

3.3 Experimental Results and Discussions ..43

3.3.1 The Effects of the Three Useful Techniques ..43

3.3.2 Performances and Results of RBB for Solving Mastermind and AB Game...................46

3.4 Chapter Conclusion ...47

Chapter 4 Structural-reduction Approach...49

4.1 Introduction ...49

4.2 Optimal Analyses for the Codebreaker and the Codemaker..51

4.2.1 Analyses of the Optimal Queries for the Codebreaker ...52

4.2.2 The Devil’s Strategy for the Codemaker ..58

4.3 An Illustrative Example of the Pessimistic Situation ..59

4.4 Chapter Conclusion ...60

Chapter 5 Optimization Algorithm and Verification Algorithm..62

II

5.1 Introduction ...62

5.2 Two-Phase Optimization Algorithm..66

5.2.1 The Structure of TPOA...66

5.2.2 Hash Collision Groups..69

5.2.3 TPOA for AB game with an Unreliable Response ...70

5.2.4 The Hashing Function and the Heuristic of Evaluation ..72

5.2.5 Experiment Results of TPOA ...73

5.3 Pigeonhole-principle-based Verification Algorithm ...74

5.4 Chapter Conclusion ...78

Chapter 6 Conclusion and Future Work ..79

6.1 Concluding Remarks ...79

6.2 Future Work ..81

Bibliography..83

Appendix A. Equivalence Transformations for AB Game at the Second Query......................88

Appendix B. Optimal Strategy for AB Game in the Expected Case..99

Appendix C. Publication List ..103

III

List of Figures

Figure 1. The screenshot of 4×6 Mastermind ...3

Figure 2. The screenshot of 4×10 AB game ...4

Figure 3. A strategy for 3×4 AB game ...15

Figure 4. The scenario of branch-and-bound pruning ..20

Figure 5. The depth-first backtracking algorithm with branch-and-bound pruning................................21

Figure 6. The game tree of Mastermind by applying DBB ..23

Figure 7. An example of the calculation of the admissible heuristic for Mastermind25

Figure 8. The game tree of AB game by applying DBB directly ...33

Figure 9. An example of the calculation of the admissible heuristic for AB game34

Figure 10. A situation that depicts the exploring process...36

Figure 11. An optimal strategy for a state with a size of 2 ...37

Figure 12. All possible game trees for a state with a size of 3..38

Figure 13. Mapping from codes in C[2,0] to those in C[1,0] for 3×5 AB game..51

Figure 14. The scenario of the pessimistic situation of a 3×20 AB game ..60

Figure 15. A game tree for the 1×3 game with an unreliable response ..63

Figure 16. The construction for TPOA+ (k, d) tree ...67

Figure 17. The sketch of TPOA..68

Figure 18. The relation between HCGs and equivalent classes..70

Figure 19. The game tree expanded by TPOA ...71

Figure 20. The sketch of the PPV algorithm ..76

Figure 21. The transformation between the game tree and its corresponding representation...............100

IV

List of Tables

Table 1. The search space of discussed deductive games...5

Table 2. The classification of proposed algorithms ..8

Table 3. Significant research of deductive games ..12

Table 4. The volumes of 14 classes calculated by Get_volume function ...24

Table 5. The experimental results of two versions of Mastermind...27

Table 6. The volumes of 14 classes in AB game..34

Table 7. 20 equivalent sets of the 209 codes at the second query...42

Table 8. The running time of exploring some states after making 1st query...44

Table 9. The numbers of the descendant states with a size of 3 ...45

Table 10. The numbers of hits and misses by using the hash table ..45

Table 11. The numbers of choices at the first four queries...46

Table 12. The minimum number of queries for 3×n AB games in the worst case61

Table 13. The upper bound derived by our program ..74

Table 14. Equivalence transformations ..88

Table 15. The mapping between responses and representative letters..99

V

Chapter 1

Introduction

1.1 Deductive Games

Deductive games are zero-sum games of imperfect information. Two opponents

are involved in deductive games. One opponent serves as a codemaker, who thinks of

a secret code in mind, and the other is a codebreaker, who has to acquire the code by

making queries iteratively. Each query is a guess for a possible secret code. After a

query is made in each ply, the codemaker will give a response. The goal of the

codebreaker is to identify the code in the fewest queries in accordance with previous

information. The game proceeds in turn until the secret code is eventually obtained by

the codebreaker. The original versions of deductive games, Mastermind and AB game

(or “Bulls and Cows”), were first introduced by the famous scientist, Donald E. Knuth,

in 1976 [45]. Detailed descriptions and categories of deductive games will be

introduced in the follow-up paragraphs.

1.1.1 Discussed Categories of Deductive Games

Generally speaking, an m×n deductive game means that each possible secret code

in the game is composed of m digits while every digit has n possibilities (symbols).

Without loss of generality, the set of these n symbols is defined as S = {0, 1, 2, ..., n −

1}. Suppose that the codemaker has a secret code mcccc K21= in mind and the

1

codebreaker makes a query mgggg K21= , where jiSgc ji ,,, ∀∈ . Then, the

codemaker will give a response [x, y], where x and y are defined as follows.

 { } migcix ii ,,1,: K=∀== . Thus, x means the number of symbols which

appear in both c and g and meanwhile, every symbol occupies the same

position in both c and g.

 , where ()∑ =
−=

n

j jj xqpy
0

,min { }jcip ij == : and { }jgiq ij == : . In

other words, y represents the number of symbols which occur in both c and g

but the positions of these symbols in c and g do not match.

Note that for convenience, [x, y] is called xAyB as well. In this notation, the

corresponding part can be omitted if x or y equal to 0. For instance, we can say 1A1B

instead of [1, 1] while [0, 1] is also called 0A1B or 1B simply. A deductive game has

ended if the codebreaker figures out the secret code, i.e., a response [m, 0] is received

by the codebreaker. Besides the above definitions, there is one additional

characteristic to distinguish two families of deductive games. That is whether repeated

symbols are allowed in each secret code or not. One of the two is the family of

Mastermind, in which repeated symbols are permitted in a secret code. The other is

the family of AB game, in which all symbols within a code are distinct. The following

subsection will offer additional introductions to the two families of deductive games

and one of their variants.

1.1.1.1 The Family of Mastermind

In this kind of deductive games, a symbol may appear several times within a

secret code. The most popular version of Mastermind is 4×6 Mastermind, which is

well-known around the world since its appearance in 1972. A secret code in it consists

of 4 digits with 6 possible symbols, e.g., 0, 1, …, 5. This is a topic that will be first

2

investigated in the study. In order to simplify its name, 4×6 Mastermind is simply

called Mastermind in the later discussion if we do not stress its dimension. Figure 1

shows the screenshot of 4×6 Mastermind, which was captured from [23].

Figure 1. The screenshot of 4×6 Mastermind

1.1.1.2 The Family of AB game

The kind of deductive games is an ancient game that may date back a century or

more and Mastermind also resembles it. The family of AB game is innately the same

as that of Mastermind except the distinct symbols in a code. 4×10 AB game is the

most common version and widespread in Asia and England. A secret code in it is

composed of 4 digits while there are 10 possible symbols, i.e. 0, 1, …, 9, in each digit.

In this study, we focus on 4×10 AB game and a generalized version, 3×n AB games,

and for the sake of simplicity, AB game is usually referred to as 4×10 AB game if the

dimension is not mentioned. Figure 2 exhibits the screenshot of 4×10 AB game,

which was captured from [57].

3

Figure 2. The screenshot of 4×10 AB game

1.1.1.3 Deductive Games with Unreliable Responses

In normal deductive games, the codemaker will always give a correct response

when the codebreaker makes a query. In order to fit in with the area of fault tolerance,

a variant model of deductive games, called deductive games with unreliable responses,

was first demonstrated by Huang et al. [38]. In other words, it is the same as the

original one but the codemaker is allowed to offer incorrect responses at most e times,

where the value of e is greater than zero. In [38], 4×6 Mastermind with an unreliable

response has been solved completely. In this dissertation, a harder problem, 4×10 AB

game with an unreliable response, will be considered and likewise, every code in it

has 4 digits with 10 possible symbols. We call it AB game with an unreliable response

for short as well.

1.1.2 Search Space of Discussed Deductive Games

Before the addressed deductive games are discussed, solid analyses of search

4

space for these problems are necessary. Assume that an m×n deductive game is taken

into account. The numbers of all valid responses given by the codemaker and all

possible queries the codebreaker can make are offered here.

 Note that there exists () ()() 2211321 ++=+++++ mmmL combinations

of the values of x and y for m digits but the response [m − 1, 1] is impossible.

Therefore, there are at most
()() ()

2
31

2
21 +

=−
++ mmmm

 legal responses. In

other words, the codebreaker may receive one of these responses which are

[m, 0], [m − 1, 0], [m − 2, 2], [m − 2, 1], [m − 2, 0], ..., [m − i, i], ..., [m − i,

0], ..., [0, m], ..., [0, 0].

 All possible guesses the codebreaker can query are same as all valid secret

codes the codemaker can choose. Obviously, there are secret codes in

the family of Mastermind and

mn

()!! mnn − codes in the family of AB game.

Thus, so are their numbers of all possible queries.

Table 1 summarizes the search space of every deductive games discussed in this

study with the use of above formulas. Note that the number of pessimistic queries for

these games means the worst-case number of queries required for the codebreaker. In

the column “# of pessimistic queries”, each value from top to down is referenced from

[45], [18], Chapter 4, and Chapter 5 of this study respectively.

Table 1. The search space of discussed deductive games

deductive games # of valid secret codes
of legal
responses

Pessimistic # of
queries

Search space

4×6 Mastermind 129664 = 14 5 (1296×14)5 ≈ 1021

4×10 AB game () 5040!410!10 =− 14 7 (5040×14)7 ≈ 1034

3×n AB game () nnnnn 23!3! 23 +−=− 9 ()⎣ ⎦ 331 ++n () ()⎣ ⎦ 33123 18279
++

+−
n

nnn

4×10 AB game with
an unreliable response

() 5040!410!10 =− 14 8 (5040×14)8 ≈ 1039

5

1.2 The Classification of Proposed Algorithms

In order to investigate the above games, several kinds of algorithms have been

proposed. We therefore give a comprehensive introduction to their classification and

major properties.

1.2.1 Computer-aided Proof

A computer-aided proof (or called computer-assisted proof, computational

method) is a paradigm of proofs, which has been partially or fully generated by

computer. Most computer-aided proofs are implemented with numerous case-by-case

exhaustion for desired problems. Sometimes, some theorems seem concise in nature

whereas their mathematical proofs rely on heavy analyses of different configurations

[69]. Thus, the computing power of computers is necessary to do an exhaustive

verification.

In fact, not only the use of computers can make the analyses of complicated

algorithms fun but also the results may not be gained in a reasonable time without the

assistance of computers [65][66]. Historically, there were many significant results

proven by this approach such as the four-color theorem [4][5], the Kepler conjecture

[32], Connect-Four [1][2], Connect-Five [3], checkers [63] and so on.

1.2.2 Branch-and-bound Algorithm

The branch-and-bound algorithm was first demonstrated by Land and Doig in

1960 [49] and its appearance is common in the modern textbooks as well [52].

Another similar algorithm is named as A* search [62] and previous study reveals that

the two types of algorithms are essentially identical and they only differ at the

interpretation level [48]. Thus, the two terms will be alternatively used below

according to the concept we intend to express.

6

In general, the branch-and-bound algorithm is a general search algorithm for

finding optimal solutions of various optimization problems. The key idea is that if a

branch is encountered in the search process, the algorithm decides whether the branch

should be cut or not in accordance with the value of the admissible heuristic (or called

bound function), which represents a lower bound to the goal.

Good admissible heuristics of a certain problem are usually hard to discover, but

are just the core of a branch-and-bound algorithm. Hence, they play significant roles

in this kind of methods. On the other hand, admissible heuristics are worth

discovering because they also have desirable properties in various search algorithms

[56].

1.2.3 Approximate algorithm

Approximate algorithms are developed to solve optimization problems in practice.

They sacrifice the guarantee of finding optimal solutions for the sake of getting

feasible solutions in a significantly reduced amount of time. Approximate methods are

usually distinguished between constructive methods and local search methods. The

former ones generate solutions from scratch by adding components (or called moves)

until a solution is complete. On the other hand, the latter ones start from some initial

solution and iteratively try to replace the current solution by a better one. However,

both methods may easily be trapped into local optima.

To escape from local optima, a new kind of approximate algorithms has emerged

in the past three decades. These algorithms try to combine basic heuristic methods in

higher-level framework aimed at efficiently and effectively exploring a search space.

Examples of these algorithms based on local search methods are genetic algorithms

[36], simulated annealing [44], tabu search [26][27], ant colony optimization [22], and

iterated greedy [60]. On the other hand, examples of algorithms based on constructive

7

methods are iterative sampling [33], HBSS [13], sampling and clustering [19],

selective-sampling simulation [10], adaptive sampling [41][61], GRASP [24][55],

block search [35], and Monte-Carlo Tree Search [20]. The main difference between

these algorithms is the mechanisms used to guide the tree search.

1.2.4 Theoretical pruning

Given a huge search space of a problem, the forward pruning is a common

scheme if a search algorithm is adopted to handle this problem. It is able to prune

some useless branches in the search to speed up the work. Recently, some new

forward-pruning mechanisms are presented such as null move [21], multi-cut [11],

and AEL pruning [34]. Although these new approaches can acquire better results in

less computation time, they still fail to guarantee the optimal outcomes. Therefore, the

mechanism of the theoretical pruning, whose key idea is to conduct a forward pruning

based on optimal analyses, is suggested in the research. Since this kind of pruning

certified by optimal analyses omits the expansion of some branches, it can not only

accelerate the speed of searching but also ensure the acquisition of best results.

Table 2 lists the classification of all algorithms appearing in the study and each

algorithm is marked with the corresponding classification. The column “Position”

shows in which chapter each algorithm is presented.

Table 2. The classification of proposed algorithms

Algorithms
Computer-aided

proof
Branch and bound

Mathematical
proof

Approximate
Theoretical

pruning
Position

DBB √ √ √ Chapter 2

RBB √ √ √ Chapter 3

SR √ Chapter 4

TPOA √ Chapter 5

PPV √ √ √ Chapter 5

8

1.3 Preliminaries of Related Work

Mastermind and AB game, whose dimensions are 4×6 and 4×10 respectively, are

widely known throughout the world. The former is popular in America while the later,

which is called “Bulls and Cows” in some places as well, is widespread in England

and Asia. AB game is an ancient game and Mastermind, which resembles AB game,

was invented in 1970. They were first stressed by the notable scientist, Knuth [45]. A

strategy of Mastermind for minimizing the number of queries was also proposed by

him and has achieved the optimal result in the worst case, where the maximum

number of queries needed is 5. Meanwhile, its number of queries in the expected case

is 4.478. Plenty of studies on finding better strategies of Mastermind in the expected

case arose from then on. Irving [39], Norvig [54], and Neuwirth [53] enhanced the

results, in which the bounds of expected numbers of queries are 4.369, 4.47, and

4.364, respectively. Flood [25], Ko and Teng [46] thus defined general notations for

m×n deductive games and proposed some improved strategies. Eventually, Koyama

and Lai [47] introduced an optimal strategy in the expected case for it in 1993 while

the expected number of queries is about 4.34. Rosu [59] also proposed a faster

algorithm and obtained the optimal strategy as well. A thorough introduction to

Mastermind and a new heuristic approach were demonstrated by Barteld [6].

Chen et al. [16] demonstrated 2×n Mastermind and solved it completely with the

graph-partition approach and Goddard [28] also obtained the same results for this

problem independently. On the other hand, there is another variation called static

Mastermind, where the codebreaker has to make all queries at once and has to

uniquely decide the secret code after receiving all answers. Greenwell [31] derived

some results of the game for small cases and provided some upper bounds of the

game in a few cases. Afterwards, Goddard [29] completely solve static mastermind

9

for at most 3 digits, and for some cases of 4 digits. Huang et al. [38] also presented a

variation, called Mastermind with an unreliable response, and obtained an optimal

strategy for it. In 2006 the Mastermind Satisfiability Problem has been shown to be

NP-complete [70]. Jäger and Peczarski [40] investigated the generalized Mastermind

and used the computer aided methods and mathematical proofs to decide the optimal

number of queries in the worst case for 3×n Mastermind and to derive the lower and

upper bounds of the numbers of queries for 4×n Mastermind, m×2 Mastermind, and

m×n Mastermind. Goodrich [30] studied the algorithmic complexity of Mastermind

with single-dimensional responses, which means that there is only one number (the

value of x) in each response.

Much more efficient meta-heuristic algorithms, which produced comparable

results with less running time in various dimensions of Mastermind, were investigated

by Bernier et al. [9], Bento et al. [7], Kalisker and Camens [43], Singley [68],

Ugurdag et al. [73], and Berghman et al. [8]. Although these methods are often

efficient and effective, they are not able to attain the optimal strategy of Mastermind.

Chen et al. [17] described a systematic method to address 4×6 Mastermind and it can

achieve a near-optimal result in the expected case.

There are some scientists that emphasized the efficiency of acquiring the good

results, such as Shapiro [67], Swaszek [71], Rosu [59], Temporel and Kovacs [72].

However, the qualities of strategies they discovered may usually be incomparable

with those of other carefully considered approaches due to quick selections of queries.

Compared to 4×6 Mastermind, there is less research on 4×10 AB game because

of its huge search space although 4×10 AB game has longer history. Chen et al. [15]

introduced 2×n AB game, and found the optimal number of queries in both the worst

and the expected cases. Moreover, Chen et al. [18] first proved the exact number of

queries in the worst case to identify a secret code for 4×10 AB game and showed that
10

the number is 7.

Merelo et al. [51] indicated that many critical issues, such as coding theory,

circuit testing, differential cryptanalysis, and additive search problem, can be modeled

as deductive games. In other words, the research of these games has led to the hope

that the fruitful solutions of problems in related areas may be obtained.

1.4 Research History of Deductive Games

Table 3 has concluded with a series of significant progressive and conclusive results

of deductive games since Knuth [45] stressed two famous deductive games,

Mastermind and AB game, in 1976. Progressive results mean that the research of the

handled problem has acquired better results but it may be refined again in the future.

Conclusive results represent that a complete conclusion (often refers to as an optimal

strategy) is obtained via the stressed problem.

The field “Problem” is the game that paper dealt with. If it writes “Several

dimensions of Mastermind”, then there are several versions of Mastermind surveyed

in that paper. We can observe that many variations of deductive games are included as

well. Moreover, the field “Case” indicates which condition the addressed problem is

considered. The terms, “Worst” and “Expected”, mean that the problem is taken into

account in the worst case and in the expected case. Note that “NP-C” is filled in the

field if the game was proven to be an NP-Complete problem in that study while

“Fixed” is used in static Mastermind and indicates a fixed number of queries is

required. The field “Author” shows the scholars who conducted this research.

Because of space restrictions, we omit each citation of the corresponding paper in

Table 3, readers can reference the previous subsection for more information.

Furthermore, it deserves to be mentioned that our contributions to the area of

deductive games are also highlighted with gray backgrounds in Table 3.
11

Table 3. Significant research of deductive games

Conclusive results Progressive results
Year

Problem Case Author Problem Case Author
1976 4×6 Mastermind Worst Knuth [45]

1978 4×6 Mastermind Expected Irving [39]

1982 4×6 Mastermind Expected Neuwirth [53]

1983 4×4, 4×5 Mastermind Expected Shapiro [67]

1984 4×6 Mastermind Expected Norvig [54]

1986 Several dimensions of Mastermind Expected Ko and Teng [46]

1988 Several dimensions of Mastermind Expected Flood [25]

1993 4×6 Mastermind Expected Koyama and Lai [47]

1996 Several dimensions of Mastermind Expected Bernier et al. [9]

Several dimensions of Mastermind Expected Bento et al. [7]
1999 4×6 Mastermind Expected Rosu [59]

4×6 Mastermind Expected Swaszek [71]

2000 4×6 static Mastermind Fixed Greenwell [31]

4×n static Mastermind Fixed Goddard [29]

Several dimensions of Mastermind Expected
Temporel and Kovacs

[72]2003 3×n static Mastermind Fixed Goddard [29]

Several dimensions of Mastermind Expected
Kalisker and Camens

[43]

2×n AB game
Worst,

expected
Chen et al. [15]

2004

2×n Mastermind
Worst,

expected

Chen et al. [16],

Goddard [28]

4×6 Mastermind Expected Barteld [6]
2005

Several dimensions of Mastermind Expected Singley [68]

Mastermind

Satisfiability Problem
NP-C

Stuckman and Zhang

[70]
Several dimensions of Mastermind Expected Ugurdag [73]

2006
4×6 Mastermind with

an unreliable response
Worst Huang et al. [38] 4×6, 5×8 Mastermind Expected Merelo et al. [51]

4×10 AB game Worst Chen et al. [18]
2007

4×6 Mastermind Expected Huang et al.
4×6 Mastermind Expected Chen et al. [17]

3×n Mastermind Worst
Jäger and Peczarski

[40]
4×n, m×2, and m×n Mastermind Worst

Jäger and Peczarski

[40]

Mastermind with

black-peg results
NP-C Goodrich [30] Several dimensions of Mastermind Expected Berghman et al. [8]

4×10 AB game Expected Huang et al.

3×n AB game Worst Huang and Lin

2009

4×10 AB game with

an unreliable response
Worst Huang and Lin

12

1.5 Terminologies of Deductive Games

There are two issues for optimizing deductive-game problems. One is to

minimize the queries made by the codebreaker in the worst case, and the other is to

minimize that in the expected case. An optimal strategy in the worst case is a strategy

which minimizes the maximum number of queries needed by the codebreaker for any

secret code chosen by the codemaker. An optimal strategy in the expected case is a

strategy which minimizes the expected number of queries required with

considerations of all possible codes. Note that a uniform distribution over all the

codes the codemaker may choose is assumed.

An alternative aspect of viewing the optimization for strategies of deductive

games as a game-tree search is adopted in this study. In order to formulate the

problem precisely, some general definitions used in the entire study are listed as

follows while other specific terms are defined in each chapter individually, if

necessary.

Definition 1. A secret code is eligible if it is compatible with all queries and the

corresponding responses given so far.

Definition 2. A set, which contains some eligible codes, is referred to as a state.

Definition 3. For an m×n deductive game, a state with only one eligible code, which

has also been queried by the codebreaker now, is defined as a final

state. That is to say that the secret code has been identified and the

game is over.

Definition 4. If finding an optimal strategy for a deductive game is regarded as a

game-tree search, then each internal node of the game tree indicates a

state while every leaf represents a final state.

13

Definition 5. The external path length (or called EPL for short) is the sum of the

depth of all leaves of the game tree.

Definition 6. The number of queries needed by the codebreaker in the expected case

(also called the expected number of queries) is L/k, where L is the

external path length of the game tree formed by the codebreaker’s

strategy and k is the number of all possible codes in the game.

Definition 7. A strategy discussed in the study refers to one of the options that the

codebreaker can choose. Each strategy has its corresponding game tree.

Trivially, the codebreaker has a lot of possible strategies.

Definition 8. An optimal strategy in the expected case is the strategy which has the

minimum expected number of queries. In other words, the external

path length of the game tree should be minimized.

Definition 9. An optimal strategy in the worst case is the strategy which has the

minimum pessimistic number of queries. Hence, the height of the game

tree should be minimized.

Definition 10. An equivalence transformation is defined as a composition of a

permutation on the set of symbols and a permutation on the set of

digits. Thus, a query g1 is said to be equivalent to another query g2 if

there exists an equivalence transformation t such that . This

concept is presented by Neuwirth

()12 gtg =

[53].

Definition 11. Suppose the codebreaker has made i-1 queries, named as g1, g2, …, gi-1,

then two codes u1 and u2 at the i-th query are called strategy equivalent

if ()11212121 ,,...,,,,...,, ugggtuggg ii −− = . In other words, we can

14

only take u1 as a representative for computing an optimal strategy if u1,

u2, …, and uj are strategy equivalent.

012 0123A

3B

120 1203A

3B

201 2013A

2A

013 0133A

1A1B

032 0323A

1A1B

312 3123A021

1A2B

0213A

102 1023A

210 2103A

3B

3B

023

1A1B

0233A

302 3023A
3B

031 0313A
1A1B

213 2133A
2B

132 1323A

310 3103A
2B

2B

103 1033A

123 1233A
2A

203 2033A
1A1B

130 1303A

301 3013A
3B

1A2B

2B

230 2303A

231 2313A
2A

2B

320 3203A
1A2B

321 3213A

2B

Figure 3. A strategy for 3×4 AB game
15

Figure 3, which is used for illustrating the above terminologies, is a codebreaker’s

strategy for 3×4 AB game. In the game, the codemaker comes up with a secret code

consisting of 3 digits out of 4 symbols, i.e., 0, 1, 2, and 3. A response, which is one of

[3, 0], [2, 0], [1, 2], [1, 1], [0, 3], and [0, 2], is received by the codebreaker in each ply.

Consequently, the codebreaker entails investigating the code with making use of those

responses. Each circle appearing in Figure 3 represents a state and the number in it is

a query made by the codebreaker at that moment while this state is encountered.

Every double-lined square means a leaf of the game tree or a final state. The text

above each arrow means the response offered by the codemaker. Note that the same

notations will be adopted in the following discussions.

Some phenomena are able to be verified easily from Figure 3. First, there are

totally 24 possible secret codes as the game starts and thus, these 24 codes are eligible

at that moment. Meanwhile, the set yielded by the 24 codes is the state at the

beginning. It is also obvious that the 24 leaves in the tree imply final states. Moreover,

Figure 3 exhibits that the external path length is 1×1 + 2×5 + 3×9 + 4×9 = 74 and the

expected number of queries required by the codebreaker is equal to 74/24 ≈ 3.083 as

well. Meanwhile, the pessimistic number of queries is 4 since the height of the game

tree is 4.

1.6 Organization of the Dissertation

This research proposes a series of theoretical-pruning optimization algorithms

and mathematical proofs for deductive games and therefore, the following studies are

composed of five major parts. In Chapter 2, a complete search algorithm, depth-first

backtracking algorithm with branch-and-bound pruning, is introduced to address

Mastermind. Meanwhile, an admissible heuristic, which can be applied to various

deductive games, is presented as well. Chapter 3 demonstrates a refined
16

branch-and-bound algorithm with speed-up techniques for AB game in the expected

case. Three useful techniques for accelerating the speed of the search algorithm are

brought up. In Chapter 4, 3×n AB games is investigated and a sophisticated method,

called structural reduction, is developed to explain the worst situation in this game.

Chapter 5 presents a variation of AB game, AB game with an unreliable response. An

important theorem for deductive games is proven and two algorithms based on it,

which are two-phase optimization algorithm with theoretical pruning and

pigeonhole-principle-based verification algorithm with theoretical pruning, are

proposed. Fortunately, an exact bound of the number of queries needed for the

problem is achieved because the upper and lower bounds resulting from the two

methods are equal. Chapter 6 concludes with remarkable results in our study and

some future work. Moreover, two appendixes, which contain the detailed information

on some proofs, are attached at the end of the dissertation.

17

Chapter 2

Depth-First Backtracking Algorithm

with Branch-and-Bound Pruning

An optimal strategy in the expected case for Mastermind has already been

proposed by Koyama and Lai [47] in 1993 by using an exhaustive search but that

study took too much time to search the strategy. Therefore, a more efficient algorithm,

called depth-first backtracking algorithm with branch-and-bound pruning or

abbreviated to DBB, is developed for solving Mastermind in this chapter. Compared

to other heuristic methods, DBB can guarantee to yield the optimal tactic if the search

procedure finishes. Moreover, an admissible heuristic, which can be applied to

various deductive games, is presented as well. Section 2.1 gives an intuitive concept

of our proposed approach. Section 2.2 introduces our depth-first backtracking

algorithm with branch-and-bound pruning for Mastermind. In Section 2.3, some

experimental results are discussed. Section 2.4 summarizes our concluding remarks in

the chapter and a critical issue is mentioned for future research.

2.1 Introduction

Mastermind, whose dimension is 4×6, is a two-player game and both of two

18

players involved are the codemaker and the codebreaker. Suppose that the set of the

six symbols, which may appear in secret codes, is S = {0, 1, 2, 3, 4, 5}. Thus, there

are 64 = 1296 valid secret codes in Mastermind. Meanwhile, there are also 14 legal

responses, which are [4, 0], [3, 0], [2, 2], [2, 1], [2, 0], [1, 3], [1, 2], [1, 1], [1, 0], [0,

4], [0, 3], [0, 2], [0, 1], and [0, 0]. The other definitions and properties are described in

Chapter 1 and so, they are omitted here.

A complete algorithm with a novel pruning technique, named as a depth-first

backtracking algorithm with branch-and-bound pruning (DBB), is proposed to solve

the problem. The idea of our scheme is similar to the admissible heuristic in the A*

search. The A* search is a tree search algorithm which finds a best path from a given

initial state to a given goal with the lowest cost. The algorithm will terminate if a best

solution is found. However, a complete search is conceptually required for our

problem. Hence, DBB will search the full game tree and prune the unnecessary

queries by using an admissible heuristic. The following sections will demonstrate the

sophisticated algorithm and its power of searching.

2.2 The Depth-first Backtracking Algorithm with

Branch-and-Bound Pruning

A large number of real-world problems can be modeled as optimization problems

or games. A search algorithm is therefore a general approach for them. Unfortunately,

most of these problems are NP-hard or PSPACE. In other words, it has to take

exponential time to search for an optimal solution. Thus, there are plenty of pruning

techniques published in the literature such as A* search [62], branch-and-bound

pruning [52], and so on.

Previous pruning approaches are appropriate for optimization problems since

19

their goal is to find a best solution in the search space. So, the search ends when it is

found. A complete search is theoretically required to our problem because of the

considerations of the optimal strategy in the expected case. Hence, traditional pruning

approaches may not easily be applied to our problem directly.

A novel pruning technique based on the admissible heuristic in the A* search is

proposed to solve the problem. In Section 2.2.1, the framework of our depth-first

backtracking algorithm with branch-and-bound pruning (DBB) is introduced. Section

2.2.2 illustrates the detailed operations of our scheme.

2.2.1 The Framework of DBB

The idea of our scheme is similar to the admissible heuristic in the A* search. The

A* search is a tree (graph) search algorithm which finds a best path from a given

initial state to a given goal with the lowest cost. The algorithm will terminate if a best

solution is found. However, a complete search is conceptually required for our

problem. Hence, DBB will search the full game tree and prune the unnecessary

queries by using an admissible heuristic. Notice that a solution described here means a

strategy for the codebreaker to identify a secret code with respect to our problem.

final state

. . .

. . .

. . .

current state

final state

s = actual cost

h'

h*: the theoretical lower bound

estimated cost = h' + h*

q1 q2

Figure 4. The scenario of branch-and-bound pruning

20

Figure 4 shows a scenario of DBB. Suppose that h’ is the cost from the root to the

current state and h* is the cost from the current state to the final state. Then, h* is

called admissible if it never overestimates the cost to reach the final state. In other

words, the actual cost is less than or equal to h’ + h*. It can also be viewed as a

theoretical lower bound for the problem we deal with.

Our scheme traverses the game tree in depth-first fashion until a final state is

reached. It then gets an actual cost s which is initially assigned to be the current-best

solution. Note that the actual cost s results from the query q1 in its traversed path.

Afterwards, it soon backtracks to its parent, e.g., the current state, and picks one of

the other queries, e.g., the query q2, and uses an admissible heuristic to estimate the

cost h* of q2. The search continues if s is larger than h’ + h*. Otherwise, a cut happens

because s is less than or equal to h’ + h*. In other words, there is no need to expand

the branch of q2 and the correctness of the algorithm is still maintained. This

continues in a similar manner until the full game tree is searched.

DBB (state v)

01 if (a final state is reached) then return the current-best solution s; // Final state indicates the leaf of the game
 tree.

02 Expand v;

03 for (each branch q of v) // Each q is a branch of v.

04 h* = ESTIMATE(q); // ESTIMATE is an admissible heuristic of
 predicting the cost from q to a final state.

05 if (h' + h* < s) then // h' is the actual cost from the start state to v.

06 DBB (the states resulting from q); // Search recursively from the states
 resulting from q.

07 else

08 Cut the branch q; // A cut happens if h' + h* ≥ s.

Figure 5. The depth-first backtracking algorithm with branch-and-bound pruning

A rough sketch of the entire algorithm is exhibited in Figure 5. It is especially

important to notice that DBB always maintains a current-best solution s during the

search. Hence, DBB goes through the downward direction at first until a final state is

reached. It therefore gets a current-best solution (s is updated). Then, DBB backtracks
21

and starts to estimate h* in each of the other queries. Unnecessary branches of the

queries will never be expanded. Note that it updates s constantly when final states are

encountered. So, DBB will finally obtain an optimal solution when the full game tree

has been traversed completely.

2.2.2 DBB for Mastermind in the Expected Case

In this section, we will deal with Mastermind in the expected case. First, the

pruning technique applied to Mastermind is introduced in Section 2.2.2.1. Second, the

admissible heuristic we used is designed and explained carefully in the follow-up

section. Eventually, an optimal strategy is found as a result of applying DBB to this

problem.

2.2.2.1 DBB for Mastermind

According to the analyses in Table 1, the search space for Mastermind is

(1296×14)5 ≈ 1021. Therefore, it takes much time to find an optimal strategy by

searching the game tree completely. A pruning technique adopted by DBB is used to

save a lot of time instead of making an exhaustive search. Figure 6 shows the game

tree of Mastermind by applying DBB. The circles in the Figure 6 mean the states

which are the sets of eligible secret codes while the diamonds are the possible queries

the codebreaker can choose (1296 valid queries in each ply). In the game tree, the 14

branches produced by the codemaker’s responses should be traversed completely and

the 1296 branches expanded by the codebreaker may be pruned by the admissible

heuristic since we are aiming at finding an optimal strategy for the codebreaker. Let’s

consider the situation exhibited in Figure 6. The traversal to the subtrees of q1 (in bold

style) is just finished and q2 is now taken into account. An estimated value h* is

obtained with the use of the admissible function. The subtrees below q2 do not have to

be expanded if the result of expanding q1 is better than h*. This is the key idea of DBB

22

and the search can thus be completed in a more reasonable time. Note that the

correctness of DBB is preserved because of the admissible heuristic.

Figure 6. The game tree of Mastermind by applying DBB

2.2.2.2 The Admissible Heuristic for Deductive Games

Now the most critical issue is how to design an admissible heuristic function to

estimate the theoretical lower bound h*. Note that minimizing the number of queries

in the expected case is the same as minimizing the external path length of the game

tree. So, the concept of volumes introduced by Huang et al. [38] is involved to get the

theoretical maximum bounds for the 14 classes (responses). In order to make sense,

the term, “response”, is replaced by “class” here. We know that different queries in a

certain ply result in distinct distributions of the eligible codes in 14 classes. The

distribution discussed here is the sizes of 14 classes resulting from a certain query.

Thus, the volume of a class [x, y] is defined as the maximum value of the numbers of

the eligible codes when the codebreaker makes all the valid queries in one ply and the

codemaker responses with [x, y]. In the beginning, at the root of Figure 6, there is a

23

total of 1296 secret codes. While the first query is considered, there are 5

nonequivalent queries in 1296 possible codes, i.e., “0000”, “0001”, “0011”, “0012”,

and “0123” for the codebreaker [47]. If the codebreaker queries “0000” and the

codemaker gives the response [1, 0], then we can derive that there are 500 possible

secret codes. Similarly, if the codebreaker queries “0001”, “0011”, “0012”, or “0123”,

and the codemaker gives the response [1, 0], then we can derive that there are 317,

256, 182, and 108 possible secret codes, respectively. So, the volume of the class [1, 0]

is set to be 500, the maximum value of these numbers: 500, 317, 256, 182, and 108.

With the use of Get_volume function (see Huang et al. [38]) based on the above idea,

the volumes of the 14 classes (responses) are obtained as in Table 4.

Table 4. The volumes of 14 classes calculated by Get_volume function

class [4, 0] [2, 2] [1, 3] [0, 4] [3, 0] [2, 1] [1, 2] [0, 3] [2, 0] [1, 1] [0, 1] [0, 2] [1, 0] [0, 0]

volume 1 6 8 9 20 48 132 136 150 252 308 312 500 625

The same principle of the extended pigeonhole principle presented by Chen et al.

[18] is therefore employed to estimate the lower bounds of the queries needed.

However, there are major differences between the problem in the previous study

(Chen et al. [18]) and this problem we consider now. Only the worst case among the

14 classes is considered for the codemaker in that paper. The so-called “worst case”

denotes the response (class) which will result in the maximum number of queries

required by the codebreaker. But each class should be taken into account for our

problem.

The heuristic function here has to calculate the “theoretical optimal” number of

queries in the expected case for a certain query (or called the lower bound of a certain

query) for the codebreaker. Suppose that the lower bound of a query q is assessed by

the codebreaker. The query q results in 14 classes. It will assume that there exists an

24

optimal strategy such that all of the eligible codes in each class may be divided evenly

in the following queries. The rated value calculated by this heuristic for a state (one of

the 14 classes) is the external path length (EPL) of the subtree that is yielded by the

theoretical optimal strategy we imagine. So, the actual expected number of queries is

thus larger than or equal to the estimated value. Trivially, the heuristic is admissible

because a theoretical optimal strategy is assumed to rate the EPL of the subtree of

each class formed by q. Moreover, it can be applied to any deductive games by

adjusting the number of legal classes (the number of legal responses the codemaker

can give) and its volume of each legal class since any other specific knowledge do not

have to be considered. In other words, the lower bound of a query q by utilizing this

heuristic is equal to the summation of each EPL with respect to 14 classes plus the

size of the state, which is the original state before q is made.

Figure 7. An example of the calculation of the admissible heuristic for Mastermind

A simple example to illustrate the calculation of the EPL regarding some class

(state) yielded by q is shown in Figure 7 with the use of the proposed admissible

heuristic. Given a state with a size of 17, as shown in Figure 5, we imagine that the

theoretical optimal strategy will divide the 17 eligible codes into 14 classes evenly

without exceeding the corresponding volumes. The number in the lower half of the

25

circle is the volume of each class and the number in the upper half is the number of

eligible codes in it. Since there is 1 leaf at level 1, 13 leaves at level 2, and 3 leaves at

level 3, it is obvious that the external path length of the tree is 1×1 + 2×13 + 3×3 = 36

in the ideal situation. Thus, the external path length of the example must be smaller

than or equal to the actual expected number of queries. It is therefore easy to see that

the heuristic is admissible because it never overestimates the expected number of

queries.

2.3 Experimental Results

In order to analyze the performance of the proposed DBB, we demonstrate the

results of the original version of Mastermind (4×6 Mastermind) and another version

of Mastermind, which is 3×5 Mastermind. 3×5 Mastermind has smaller search space

in the case of 3 digits with 5 possible symbols. That is to say that it has 53 = 125

possible secret codes totally. Note that the equivalent properties proposed by

Neuwirth [53] are able to reduce the search space. For example, “0000” is equivalent

to “1111” at the first query because the numbers, 1 and 2, are both not used before.

With the considerations of the properties, there are five nonequivalent queries at the

first query, which are “0000”, “0001”, “0011”, “0012”, and “0123”. The branching

factor in the first ply changes from 14×1296 to 14×5 eventually. This technique has

also been implemented in our programs in order to speed up the search.

Besides the comparison between 3×5 Mastermind and 4×6 Mastermind, we also

investigate the effect of the traversing order during the search. In other words, we

have to decide which query is promising when several queries are encountered after

the current state is visited. To deal with this issue, we estimate the lower bounds of

the child states by making use of the admissible heuristic before they are expanded.

We sort their lower bounds and traverse these queries order-by-order in accordance
26

with their values. The smaller the value is, the earlier the traversal is. All experiments

were run on a dedicated PC with an AMD Opteron 252 processor. The experimental

results are exhibited in Table 5.

Table 5. The experimental results of two versions of Mastermind

 3×5
Mastermind

4×6
Mastermind

DFS > 10 hr. > 10 days
DBB 38.68 sec. 43.76 hr.

DBB (promising query) 11.21 sec. 9.5 hr.
External path length 451 5625

DFS is the abbreviation of depth-first search while the term, “promising query”,

means that DBB expands the queries in nondecreasing order according to the values

of lower bounds. We can see that DBB is able to obtain the optimal strategies for the

two versions and their corresponding external path length is 451 and 5625,

respectively. This means that the expected number of queries is about 4.34

(≈5625/1296) for Mastermind if we apply the optimal strategy in the expected case.

The results also show that DBB with the considerations of promising queries has the

best performance. Without the judgement of promising queries, DBB will traverse a

lot of useless queries. That is to say that most queries will be cut if DBB expands

queries in the correct order.

From the experimental results, DFS has very poor performance doubtlessly since

it is certainly an exhaustive search. Hence, DFS can not search the full game tree in a

reasonable time and the total number of the states it has to expand is still unknown.

On the other hand, DBB is significantly superior to and is over 25 times faster than

DFS. Totally, there are 137834651 states expanded by DBB. The results also reveal

that the larger the search space is, the more important the pruning technique is.

27

2.4 Chapter Conclusion

Previously, an exhaustive search was applied to find the optimal strategy for

Mastermind. But it may not be adopted in other harder problems or games because of

its huge search time. In this chapter, a more efficient depth-first backtracking

algorithm with branch-and-bound pruning (DBB) for Mastermind in the expected

case is introduced, and an alternative optimal strategy is obtained eventually.

Moreover, an admissible heuristic, which can be applied to various deductive games,

is presented as well. From the experimental results, the effect of expanding promising

queries during the search is significant to the performance of DBB. Meanwhile, DBB

is significantly superior to and is over 25 times faster than the traditional search

algorithm. How to design a more precise admissible heuristic is yet another critical

issue. Furthermore, it may be interesting to compare our method with other search

algorithms or other heuristics mentioned in the previous studies with the consideration

of the qualities of solutions and the search time.

28

Chapter 3

Refined Branch-and-Bound

Algorithm with Speed-up Techniques

Another famous deductive game is AB game, which is popular in Asia and

England. However, to date, there have been no optimal expected-case strategies for

AB game in formal literature since its appearance. Since the complexity of these

deductive games grows at an exponential rate with higher dimensions, DBB can not

be directly applied to efficiently solve AB game in the expected case.

In this chapter, a refined branch-and-bound algorithm with speed-up techniques,

which is abbreviated to RBB, is demonstrated for AB game in the expected case. This

algorithm is based on DBB and three useful techniques such as the incremental update

of the lower bounds, the hashing technique, and the reduction of equivalent queries

are invented to integrate with it. Therefore, RBB will lead to the hope that the optimal

tactic of AB game in the expected case is attained. Section 3.1 reviews our handled

problem and compares the search space between Mastermind and AB game. Section

3.2 introduces a refined branch-and-bound algorithm while new techniques and

significant improvements are demonstrated here as well. In Section 3.3, some

experimental results and discussions are given. Section 3.4 summarizes the

29

remarkable results in this chapter.

3.1 Introduction

AB game, which is also called “Bulls and Cows” in England, is another popular

deductive game around the world for decades as well. Its dimension is 4×10 and there

are also two opponents involved in this game, which are called the codemaker and the

codebreaker respectively. There are ten symbols appearing in possible secret codes of

AB game, e.g., 0, 1, 2, …, and 9. Note that the repeated symbols are not allowed in a

single secret code. Thus, there are 10!/(10-4)! = 5040 valid secret codes in AB game.

Meanwhile, the 14 legal responses of AB game, which are [4, 0], [3, 0], [2, 2], [2, 1],

[2, 0], [1, 3], [1, 2], [1, 1], [1, 0], [0, 4], [0, 3], [0, 2], [0, 1], and [0, 0], are the same as

those of Mastermind. The accurate definitions are exhibited in Chapter 1 and

therefore, these descriptions are omitted here.

The search space, which means all possible strategies the codemaker and the

codebreaker can adopt, for 4×6 Mastermind and 4×10 AB game is compared in the

following equation:

()
()

12
5

7

10
141296
145040

>
×
×

Notice that the upper part of the equation is the search space for 4×10 AB game while

the lower one is that for 4×6 Mastermind. Clearly, the search space for 4×10 AB

game is far larger than that for 4×6 Mastermind. Moreover, the search space

represents the required time to discover an optimal strategy for the codebreaker since

the expected number of queries is considered. Hence, it is clear that the difficulty of

solving AB game is much harder than that of solving Mastermind.

To the best of our knowledge, the optimal strategy of 4×10 AB game for the

codebreaker has never been discovered and meanwhile, its corresponding expected
30

number of queries has not been determined yet due to its difficulty. In Chapter 2, a

fruitful pruning framework, DBB, relied upon the admissible heuristic in the A* search

was proposed to solve 4×6 Mastermind. However, it is not capable of solving 4×10

AB game right away since it has much huger search space than 4×6 Mastermind. In

this chapter, our goal aims at finding an optimal strategy of 4×10 AB game for the

codebreaker to minimize the expected number of queries.

3.2 A Refined Branch-and-Bound Algorithm with Speed-up

Techniques

A full search is theoretically conducted to our problem so as to consider the

optimal tactic in the expected case. Because DBB can not solve the concerned

problem directly, a refined approach based on it is demonstrated. Furthermore, the

idea of DBB will be introduced briefly to make this chapter self-contained.

3.2.1 The Fundamental Framework in Terms of Branch-and-Bound
Pruning

Although DBB proposed in Chapter 2 can not explore the game tree directly

within a reasonable time, it remains a vital basis for us. Therefore, a brief introduction

to DBB is still given here.

DBB and the A* search act in a similar way. The A* search is regarded as a tree

(graph) search algorithm which looks for a path from an initial state to a final goal

with the lowest cost. It will terminate if a best solution is obtained. However, a full

search is necessarily engaged in dealing with our problem because we need to

calculate the value of the external path length of the game tree. Hence, DBB will

carry out a search of the whole game tree and prune the useless states by taking

advantage of an admissible heuristic. Notice that a solution described here denotes a

31

strategy for the codebreaker to identify a secret code with respect to our problem.

Let h’ denote the cost from the root to the current state and h* be an estimated

cost from the current state to a final state. Then, h* is called admissible if it never

overrates the cost to reach the final state. In other words, the actual cost is less than or

equal to h’ + h*. It can also be viewed as a theoretical lower bound for the problem we

cope with.

DBB first traverses the game tree in depth-first fashion until a final state is

reached. It then gets an actual cost s which is initially assigned to be the current-best

solution. Note that the actual cost s results from the query q1 in its traversed path.

Afterwards, it soon backtracks to the current state, and picks one of the other queries,

e.g., the query q2, and uses an admissible heuristic to estimate the cost h* of q2. The

search continues if s is larger than h’ + h*. Otherwise, a cut happens because s is less

than or equal to h’ + h*. This continues in a similar manner until the full game tree is

searched. Figure 4 shows roughly the scenario and Figure 5 exhibits this algorithm.

The current state is what we consider presently. An admissible heuristic will be used

to estimate its cost h* and thus, h’ + h* is compared with the actual cost s to determine

whether it should be cut or not.

In accordance with the analyses in Table 1, the search space for AB game is

(5040×14)7 ≈ 1034. Figure 8 shows the game tree of AB game by applying DBB

directly. The circles in Figure 8 mean the states which are the sets of eligible secret

codes while the diamonds are the valid queries the codebreaker can choose (5040

queries in each ply). In the game tree, the 14 branches yielded by the codemaker’s

responses should be traversed completely and the 5040 branches expanded by the

codebreaker may be pruned by the admissible heuristic since we are aiming at finding

an optimal strategy for the codebreaker. Let’s take the situation exhibited in Figure 8

into account. The search to the subtrees of q1 (in bold style) is just finished and q2 is
32

now considered. An estimated value h* is obtained by using the admissible function.

The subtrees below q2 do not have to be expanded if the result of expanding q1 is

better than h*.

Figure 8. The game tree of AB game by applying DBB directly

The admissible heuristic presented in Section 2.2.2.2 with slight modifications of

the volume of each legal class is utilized to estimate the lower bounds of the numbers

of queries. Likewise, different queries in a certain ply result in different distributions

of the eligible codes in the 14 responses. Similarly, the volume of a response [x, y] is

also defined as the maximum value of the numbers of the eligible codes when the

codemaker responses with [x, y]. The first query made by the codebreaker has only

one choice here because all of the queries are equivalent at the first query. As a result,

g = “0123” is selected as the representative for the first query. The numbers of eligible

codes of each class after g is made form these volumes are concluded in Table 6.

From the analyses in Section 2.2.2.2, the actual expected number of queries is thus

larger than or equal to the value of estimations. An example to illustrate the

33

calculation of the EPL about some class (state) is shown in Figure 9. Notice that the

only difference between Figure 7 and Figure 9 is their volumes.

Providing a state with a size of 17, as shown in Figure 9, we imagine that the

theoretical optimal strategy will distribute the 17 codes into 14 responses evenly

without exceeding the corresponding volumes and so does the optimal strategy in

each of the following levels of the game tree. The number in the lower half of the

circle is the volume of each response and the number in the upper half is the number

of secret codes in it.

Since there is 1 leaf at level 1, 13 leaves at level 2, and 3 leaves at level 3, it is

obvious that the external path length of the tree is 1×1 + 2×13 + 3×3 = 36. Thus, the

actual external path length of a state with a size of 17 must be larger than or equal to

36. The heuristic is therefore admissible because it never overrates the expected

number of queries.

Table 6. The volumes of 14 classes in AB game

class [4, 0] [3, 0] [2, 2] [2, 1] [2, 0] [1, 3] [1, 2] [1, 1] [1, 0] [0, 4] [0, 3] [0, 2] [0, 1] [0, 0]

volume 1 24 6 72 180 8 216 720 480 9 264 1260 1440 360

2
6

17

2
8

2
9 24

1 1
72

1
180

1
216

1
264

1
360

1
480

1
720

1
1260

1
1440

1
6

1
6

1
6

Figure 9. An example of the calculation of the admissible heuristic for AB game

34

3.2.2 The State-of-the-Art Techniques

The fundamental framework has been reviewed in Section 3.2.1. It has been

proven dramatically that the algorithm is highly suitable for addressing deductive

games. However, it is not enough to handle AB game in the expected case. Some

attributions of the game are observed seriously so that three critical challenges are

summarized as follows.

 How to increase the precision of the lower bound?

 How to avoid expanding the redundant states?

 How to prune the equivalent queries?

An optimal strategy will be discovered providing that these challenges are able to

be coped with totally. Fortunately, a refined branch-and-bound algorithm with

speed-up techniques (RBB) is designed and three useful techniques contained in it are

introduced and discussed among the follow-up contents.

3.2.2.1 Technique 1: Incremental Updates of the Lower Bounds

During the gaming process, there will be generally 5040 queries for the

codebreaker in each ply. When a new state is met, a current best solution s is acquired

after DBB undertakes a search to one of the 5040 branches. Thus, DBB has to check

other queries and two possible cases are going to take place. One case is that the rated

lower bound of the query is less than s, and then the search into it occurs. The other

case is that the search will be omitted according to branch-and-bound pruning because

s outperforms this rated lower bound. Obviously, this mechanic of the process comes

up with a new idea naturally. The percentage of the cutoffs is going to increase

markedly if the estimated lower bounds become higher by calculating it more

accurately. Concrete steps are offered below.

Suppose that the current best solution s is provided by the query g. There is

35

another query called g* that we analyze now and moreover, s* refers to the lower

bound which has been rated by the admissible heuristic H at the beginning. Assume

that s* is less than s. It is clear that the subtree yielded by g* has to be explored in

accordance with our proposed manner. However, we come up with an idea to update

the lower bound incrementally during the exploring process of g* so as to stop

searching as soon as possible providing that s* becomes equal to or larger than s. In

the detailed considerations, g* divides the current state into 14 classes (responses) so

that H is able to rate its external path length (EPL) with the 14 classes. Hence, s* is

summed with the 14 rated numbers. When every class has been traversed, a real EPL

of this class is available as well. Once a real cost of exploring the class has been

acquired, an update to s* happens immediately. Furthermore, s* grows gradually as we

explore these classes one by one.

. . .g g*

s

s*

s* grows gradually during
the search to this subtree.

Figure 10. A situation that depicts the exploring process

When an update happens, s competes with the up-to-date s* at the same time. The

exploring process of g* stops if s* is equal to or larger than s. Otherwise, it keeps on
36

working until the subtree formed by g* is searched entirely. And the follow-up actions

are performed with the use of DBB as usual. A situation that depicts the searching

process is shown in Figure 10. Meanwhile, the bold lines and shaded areas highlight

whatever has already been searched and s* is the latest lower bound until now.

3.2.2.2 Technique 2: Earlier Terminations

It is trivial that the game is over if there exists only one choice for the

codebreaker and he has just figured it out. It is also clear that the searching process

should be terminated if we are aware of the external path length (EPL) of some states

precisely. Accordingly, a critical issue for obtaining the exact EPL of some states has

arisen. It is highly difficult to know the exact EPL without conducting a search when

the state is larger. In this case, there is a chance to get it more early only if the state is

smaller enough. In order to cope with this, two types of pruning methods are proposed

to achieve the goal of earlier terminations if the size of a state is below 12.

 Theoretical pruning

If the size of a state is 2, it is easy to notice that the game tree in Figure 11

is optimal and its EPL is therefore 3.

[4, 0]

[4, 0]

Size = 2

Size = 1

Figure 11. An optimal strategy for a state with a size of 2

On the other hand, the size of a state is 3 is then taken into account. We

notice that two situations occur. One is that the tactic for this state chooses

one of these three eligible codes as the next query. This will result in a [4, 0]
37

class appearing in its game tree. The left portion, i.e. (a) and (b), of Figure

12, in which there exist two kinds of possible trees, indicates the

phenomenon. The other situation is also offered in the right portion, i.e. (c),

(d), and (e), of Figure 12, where there are three possibilities in addition. The

right part implies that the codebreaker chooses one query from all possible

codes except the three ones in this state. Note that the scenario of (e)

describes that the size of the state still remains 3 after the query in this ply

is taken, where EPL' is the external path length of the following state. In

other words, there is no use making this query but to increase its EPL by 3

in addition.

EPL = 7

Size = 3

EPL = 6

Size = 3

EPL = 6

EPL = 5

[4, 0]
Size = 3

[4, 0]

EPL = EPL' + 3

...

Size = 3

Size = 3

[4, 0]

[4, 0]

Size = 3

Size = 2

(a)

(b)

(c)

(d)

(e)

Figure 12. All possible game trees for a state with a size of 3

38

By perceiving the overall figure, the EPLs for the left trees are 5 and 6

respectively while those of the right ones are 6 and above. It means that an

optimal strategy will be generated only by taking the left two trees into

account. In this case, the correlations among the three eligible codes should

be considered. Assume that the three queries (secret codes) are named as g1,

g2, and g3, where their correlations are r12, r23, and r31 respectively. The

correlation here indicates the response made by the codemaker providing

that one of these three queries is his secret code when the codebreaker takes

another query from the two residual codes. Note that the optimal EPL for a

state with a size of 3 is 6 if r12, r23, and r31 are all equal, i.e. the situation of

Figure 12(b). Otherwise, the optimal EPL must be 5 as shown in Figure

12(a). With this observation, the optimal EPL can be easily calculated

without searching all the 5040 valid queries.

From the above theoretical analyses, we know that the EPL of a state can be

easily determined if the state is able to be analyzed. In other words,

theoretical pruning of valid queries is feasible if the size of a state is 2 or 3.

 Practical pruning

In accordance with the previous analyses, it seems to be intuitive that DBB

will terminate and backtrack earlier if the optimal EPL can be decided as

earlier as possible. Furthermore, a crucial property is realized by

investigating the game tree when the size is sufficiently small. It reveals

that the full game tree is filled with duplicated states with smaller sizes.

This discovery comes up with a good idea which is able to reduce the

searching time by storing the EPLs of explored states, whose size are

between 4 and 12. By utilizing the concept, a hash table is implemented

naturally to meet the requirement. The Zobrist hashing approach [74] is
39

adopted as a hash function and a simple replacement method, in which a

new record just replaces the value that is already in the corresponding slot,

is employed to resolve collisions. Due to the low collisions of the Zobrist

hashing method, the simple replacement policy is highly efficient for our

problem. Before the use of the Zobrist hashing method, a random number is

generated for each possible secret code and represents this corresponding

code in the searching process. Suppose that we now have a state with n

eligible codes, where the value of n is between 4 and 12. All corresponding

random numbers of the n codes are XORed together and the result modulo

the size of the hash table is computed to acquire a hash key, which

represents the corresponding position for storing this state in the hash table.

So, the information of the state and its corresponding optimal EPL are

stored in this position after the state has been explored. Once a collision

occurs, the new record just replaces the old one that is already in the

corresponding position. The EPLs are going to be looked up in the hash

table when new states are encountered. Although the hash table is designed

in a basic manner, it has contributed substantial performance improvements.

The experimental results will clarify the progress in the later discussions.

Note that the hash table occupies about 1.6 Gbytes memory because it has

225 entries and each entry contains 13 integers (one for storing the EPL and

12 for keeping the 12 secret codes at most). From an informal test, the

performance is better if an entry stores the state whose size is at most 12.

Remember that the larger the state which is stored in an entry of the hash

table is, the more time our program should take if the program has to decide

whether the current state is traversed or not.

Due to the huge number of codes in larger states and the huge amount of memory
40

space for storing the larger states and their EPLs, the states whose sizes go above and

beyond 12 will not be held in the hash table. This implies that a normal search is

carried out to them.

3.2.2.3 Technique 3: Reductions of Equivalent Queries

The technique introduced in Section 3.2.2.2 focuses on pruning the leaves in the

game tree. Moreover, an overall subtree will be cut thoroughly if we can reduce the

number of the choices the codebreaker has to concern about at the first few queries.

At the first query, only one choice, instead of 5040 secret codes, should be considered

because there are no symbols that are used before and the 5040 codes are therefore all

equivalent. “0123” is adopted as the first query here. At the second query, only four

out of ten symbols are used by the first query and the other six unused symbols (4,

5,.. , and 9) can be treated as equivalent ones. Hence, at the second query, we can only

consider nonequivalent codes, where i is the number of

symbols used at both the first and the second queries. Furthermore, 20 equivalent sets

that come from further categorizing the 209 codes are gained by employing the

concept of equivalence transformation demonstrated by Neuwirth

() () 209,4,4
4

0
=×∑

=i
iPiC

[53]. An

equivalence transformation is defined as a composition of a permutation on the set of

colors, called C, and a permutation on the set of positions, called P. For instance, an

equivalence transformation t is defined as follows:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , . ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

Then, the query, “0132”, is equivalent to “0213” while t(0132) = 0213. Furthermore,

a crucial property, strategy equivalent, which can help us to reduce the search space,

is described in Definition 11 of Chapter 1. In other words, we can only take p1 as a

representative for computing an optimal strategy if p1, p2, …, pn are strategy

equivalent. The equivalent secret codes at the first three queries can be obtained by
41

using exhaustive search to verify each possible strategy or making use of the algebra

package, Nauty, which is a program based on the paper introduced by McKay [50] for

computing isomorphism and automorphism groups of graphs.

Table 7, in which each row stands for an equivalent set, lists all of the 209 codes and

their categories with the use of the concept of strategy equivalent codes at the second

query. Their corresponding equivalence transformations are attached at Appendix A

as a proof. The equivalence transformations of strategy equivalent codes at the third

query are not listed due to space restrictions. In Table 7, the first code in every row,

which is highlighted with bold letters, is chosen as the representative since the codes

in the same row are all strategy equivalent.

Table 7. 20 equivalent sets of the 209 codes at the second query

Order Elements of each set
1 0123
2 0132, 0213, 0321, 1023, 2103, 3120
3 4567
4 0231, 0312, 1203, 1320, 2013, 2130, 3021, 3102
5 1032, 2301, 3210
6 1230, 1302, 2031, 2310, 3012, 3201
7 0124, 0143, 0423, 4123
8 0456, 4156, 4526, 4563
9 0145, 0425, 0453, 4125, 4153, 4523

10 1456, 2456, 3456, 4056, 4256, 4356, 4506, 4516, 4536, 4560, 4561, 4562
11 0134, 0142, 0243, 0324, 0413, 0421, 1423, 2143, 3124, 4023, 4103, 4120

12
0245, 0345, 0415, 0435, 0451, 0452, 1425, 1453, 2145, 2453, 3145, 3425,
4025, 4053, 4105, 4135, 4150, 4152, 4253, 4325, 4503, 4513, 4520, 4521

13 1045, 2405, 3450, 4215, 4351, 4532

14
1245, 1345, 1405, 1450, 2045, 2415, 2435, 2450, 3045, 3405, 3451, 3452,
4015, 4051, 4205, 4235, 4251, 4315, 4350, 4352, 4502, 4512, 4530, 4531

15 1435, 1452, 2345, 2451, 3245, 3415, 4035, 4052, 4250, 4305, 4501, 4510
16 0214, 0341, 0432, 1024, 1043, 2104, 2403, 3140, 3420, 4132, 4213, 4321

17
0234, 0241, 0314, 0342, 0412, 0431, 1243, 1324, 1403, 1420, 2043, 2134,
2140, 2413, 3024, 3104, 3142, 3421, 4013, 4021, 4102, 4130, 4203, 4320

18 1034, 1042, 1432, 2304, 2341, 2401, 3214, 3240, 3410, 4032, 4210, 4301

19
1234, 1240, 1304, 1342, 1402, 1430, 2034, 2041, 2314, 2340, 2410, 2431,
3014, 3042, 3204, 3241, 3401, 3412, 4012, 4031, 4201, 4230, 4302, 4310

20 1204, 1340, 2014, 2430, 3041, 3402, 4231, 4312

42

In spite of declining the branching factors of the game tree at the first three

queries, there are still numerous choices in the following plies. A similar mean is

thereby going to be provided so as to reduce the possibilities at the fourth query. All

of the unused symbols during the first three queries are treated as the same one. In

short, those choices, in which a few digits contain the same used symbols in the same

digits and the rest digits are composed of other unused symbols, are equivalent

definitely.

For example, providing that the first three queries are “0123”, “1045”, and

“1758” respectively, both “3869” and “3896” will belong to the same equivalent set

because 6 and 9 are not used in the previous queries. With this simple concept, the

number of the fourth query will be declined extremely in average and the concrete

results are going to be presented in the next section as well.

3.3 Experimental Results and Discussions

This section presents two parts of outcomes which result from the proposed

techniques. The first part is to exhibit the individual effects according to each of the

three techniques. The second one will make a comparison between DBB and RBB by

applying them separately to Mastermind, which has a much smaller search space. This

may indicate how efficient our new method is. Finally, AB game is drawn on it and

we thereby attain the success in finding the optimal tactic in the expected case. Notice

that all the experiments are run on a DELL Precision 7400 Workstation equipped with

a Quad-Core Intel Xeon X5450 CPU and 8 Gbytes RAM. Only a single core is

utilized at a time due to the sequential programs regardless of a multi-core CPU.

3.3.1 The Effects of the Three Useful Techniques

Table 8 shows the effects with the incremental updates of the lower bounds. Note that

43

Technique 2 and Technique 3 are integrated into the programs either with or without

Technique 1 in this experiment in order to save an enormous amount of running time.

The left column in Table 8 indicates the selected states with some proper sizes after

making the first query for AB game.

For example, C[3, 0] refers to the state after the codemaker replies [3, 0] and |C[3, 0]|

is consequently the number of its eligible codes. The right two columns present the

running time required to traverse each subtree of the corresponding state either with

or without the use of Technique 1. It is obvious that the speedup of Technique 1 is by

a factor of about 5 for some larger states, e.g. C[1, 1], C[1, 0] and C[0, 2]. It also shows that

the larger the size of the state is, the higher the speedup is.

Table 8. The running time of exploring some states after making 1st query

Size of the state Without Technique 1 (Seconds) With Technique 1 (Seconds)
|C[2, 1]| = 72 20 11
|C[2, 0]| = 180 121 41
|C[1, 2]| = 216 357 120
|C[1, 1]| = 720 47645 8386
|C[1, 0]| = 480 3001 518
|C[0, 3]| = 264 1361 317
|C[0, 2]| = 1260 1616865 148592

An evaluation to Technique 2 is depicted in Table 9 and Table 10. The statistics

of counting up the numbers of the descendant states with a size of 3 for some states

are conducted within Table 9. For instance, there are totally 418161 descendant states

that contain 3 eligible codes while a search to C[1, 2] has been undertaken. The result

represents the numbers of the cases that Technique 2 can be applied, so the optimal

tactic for these states will be gained quickly and easily. This means we can save much

time because we do not examine all the 5040 choices in the next ply. On the other

hand, the hash table demonstrated in Technique 2 may sometimes be viewed as a

cache and detailed information to its performance is thus listed in Table 10.

44

Table 9. The numbers of the descendant states with a size of 3

States # of the descendant states with a size of 3
C[3, 0] 4540
C[2, 1] 28474
C[2, 0] 12042
C[1, 2] 418161
C[1, 0] 91826
C[0, 3] 1627148

Note that the corresponding random number for each secret code is 64 bit and the

size of the hash table is 225 in our implementation. The state, C[1, 2], is taken to serve

as an example for the illustration. It means that 366621 states whose sizes vary from 4

to 12 are able to be looked up in the table directly as 27375 ones are not available in it

and they have to be explored thoroughly and then be inserted into the table. The hit

rate, which is 366621 divided by (366621+27375), is thereby about 0.931. The hash

table occupies about 1.6 Gbytes memory in our design and receives a considerable

performance promotion.

Table 10. The numbers of hits and misses by using the hash table

States # of hits # of misses Hit rate
C[3, 0] 3434 502 0.872
C[2, 1] 11863 1815 0.867
C[2, 0] 20350 8160 0.714
C[1, 2] 366621 27375 0.931
C[1, 0] 163347 106346 0.606
C[0, 3] 1698126 65811 0.963

The results shown in Table 11 provide the assessments of Technique 3. Recall

that the numbers of the choices taken by the codebreaker in the first two plies are 1

and 20 respectively. Table 11 lists the numbers of the third choice and the average

numbers of the fourth choice the codebreaker can make and meanwhile, the numbers

for the first two choices are offered in it as well.

45

Table 11. The numbers of choices at the first four queries

1st query 2nd query # of choices at the 3rd query Average # of choices at the 4th query
0123 0123 20 852.85
0123 0124 107 1296.66
0123 0132 67 809.37
0123 0134 270 1255.17
0123 0145 295 1993.36
0123 0214 270 1255.17
0123 0231 75 790.99
0123 0234 501 1234.25
0123 0245 1045 1959.62
0123 0456 363 3020.61
0123 1032 39 807.97
0123 1034 270 1255.17
0123 1045 295 1993.36
0123 1204 175 1246.02
0123 1230 59 783.29
0123 1234 501 1234.25
0123 1245 1045 1959.62
0123 1435 541 1957.71
0123 1456 1012 3008.06
0123 4567 180 4162.67

From Table 11, it is easy to realize that the numbers of the third choice vary from

20 to 1045, i.e. 356.50 in average, which occupies 7.07% of the original 5040 choices.

Moreover, it also shows that the average number of the fourth choice is 1643.81,

which is 32.62% of the original 5040 choices. Therefore, a considerable amount of

redundant choices at the first four queries has been removed with the use of

Technique 3. In fact, the search space of the entire game tree has roughly become

(1×14)⋅(20×14)⋅(356.50×14)⋅(1643.81×14)⋅(5040×14)3, where 356.50 and 1643.81 are

the averages of the branching factors at the third and fourth queries respectively.

3.3.2 Performances and Results of RBB for Solving Mastermind and
AB Game

In order to examine the performance, a deductive game with smaller dimensions,

46

Mastermind, is first explored with the proposed approach composed of all significant

refinements except Technique 3. Technique 3 can not be applied in Mastermind

because repeated symbols are allowed in the queries of the game. The program relied

upon RBB therefore finished the work with 43 minutes in the experiment and gained

the optimal EPL that is 5625. This means that the expected number of queries of the

optimal strategy in the expected case for Mastermind is 5625/64 ≈ 4.34. On the other

hand, it has to take 451 minutes to complete the same work with the use of DBB.

Hence, RBB outperforms DBB by 10 times faster only with the first two techniques.

Note that DBB explores 137834651 states during the searching process while RBB

only expands 31720272 states.

With the success, RBB integrating all the three techniques to find the optimal

tactic of AB game in the average case was thereby undertaken. An invaluable result

was eventually gained in about 18 days (From Nov. 6, 2008 to Nov. 23, 2008). The

optimal strategy for AB game was therefore obtained and its corresponding EPL is

26274. Moreover, a partial strategy is also presented in Appendix B. Now we have the

following theorem.

Theorem 1. The expected number of queries of the optimal strategy in the expected

case for AB game is 26274/5040 ≈ 5.213.

3.4 Chapter Conclusion

In this chapter, we focus on finding the optimal strategy in the expected case for

AB game. An elegant approach, which is named as refined branch-and-bound

algorithm with speed-up techniques (RBB), essentially based on the incremental

update of lower bounds, the hashing technique, and the reduction of equivalent

queries is designed to explore its huge search space. In the development of pruning

techniques, we also realize that the ratio of pruning is significant if the pruning is
47

based on theoretical analyses. In order to compare RBB with DBB, Mastermind is

first addressed by applying these two methods individually. A dramatic improvement

is exhibited in the outcomes and RBB outperforms DBB over 10 times faster.

Fortunately, an optimal strategy for AB game in the expected case is eventually

obtained by utilizing RBB. The corresponding external path length is 26274. In other

words, the expected number of queries required by the codebreaker is 26274/5040 ≈

5.213. Note that Appendix B attached at the end of this dissertation contains the

partial optimal strategy for AB game, which is discovered by RBB.

48

Chapter 4

Structural-reduction Approach

In this chapter, a sophisticated method, called structural-reduction approach

(SR), which aims at explaining the worst situation in 3×n AB games is developed.

Section 4.1 introduces our addressed problem and additional definitions that are used

in this chapter. Section 4.2 analyzes the optimal strategies for the codebreaker and the

devil’s strategy for the codemaker. In Section 4.3, a practical example is offered to

describe the pessimistic situation of this game. Section 4.4 concludes with our

analyses and a worthwhile formula for calculating the optimal numbers of queries

required for arbitrary values of n is derived and proven finally.

4.1 Introduction

3×n AB games means that there are 3 digits in a single secret code and each digit

has n possibilities (symbols). Suppose that the set of symbols appearing in 3×n AB

games is S = {0, 1, 2, …, n − 1}. From the analyses of Chapter 1, the number of all

legal responses is 9 and these responses are [3, 0], [2, 0], [1, 2], [1, 1], [1, 0], [0, 3], [0,

2], [0, 1], and [0, 0] respectively. Meanwhile, the number of all possible secret codes

equals to n(n − 1)(n − 2) as well. For example, assume that the codemaker chooses c =

215 as a secrete code and the codebreaker makes a query g = 012. Then, the

codemaker will offer a response [1, 1].

49

Before 3×n AB games are discussed formally, some additional definitions besides

those offered in Chapter 1 have to be explained first in order to describe the analyses

precisely. Thus, they are defined as follows.

Definition 12. Let C1 and C2 denote two states in the game tree. We say that C1 is

harder than C2 if identifying a secret code in C1 requires more queries

than that in C2. In other words, the difficulty of a state means how

many queries the codebreaker requires to identify a secret code.

Definition 13. A strategy of responses taken by the codemaker is called a devil’s

strategy or an adversary response if this strategy maximizes the

number of queries required by the codebreaker.

Definition 14. Suppose that there are two states, which are C1 and C2 respectively. If

there exists a one-to-one function r such that each secret code in C1

maps another one in C2 and preserves the structure of C1, then we say

that C2 dominates C1. Furthermore, r is called a structural reduction. In

symbols, we write C1 ≤ C2.

Now, 3×5 AB game is taken into account as an illustrative example. Suppose that

the set of five symbols in this simple game is S = {0, 1, 2, 3, 4}. If the codebreaker

makes a query, 012, and the codemaker responses [2, 0] in the first ply, the eligible

codes are therefore 013, 014, 032, 042, 312, and 412 after the first ply. The set C[2,0] =

{013, 014, 032, 042, 312, 412} forms a state. From the result of the later experiment,

which conducts an exhaustive search to 3×5 AB game, the number of queries required

is maximum if the codemaker implements a devil’s strategy to provide the response,

[0, 2], at the first response.

On the other hand, C[2,0] and the state, C[1,0] = {043, 034, 432, 342, 314, 413},

which is produced when the codemaker responses [1, 0] at the first response, are then
50

considered. Notice that the elements in C[2,0] are of the forms, 01b, 0b2, or b12, where

. Thus, we define a structural reduction of r as { }4,3=∈ Bb

{ }
⎪
⎩

⎪
⎨

⎧
−∈∈

zbb
bBzBbzbb

zbb
r

112
.andwhere,220

001
:

a

a

a

Figure 1 exhibits the mapping of each code in C[2,0] in detail. Note that the mapped

codes in C[1,0] preserve the structures of those in C[2,0]. This implies that finding a

secret code in C[1,0] is as hard as or harder than that in C[2,0]. Intuitively, this is also

obvious since there is one more identified symbols in C[2,0] than in C[1,0]. Hence, we

say that C[1,0] dominates C[2,0]. Furthermore, the structural reduction has the property

of the transitive relation obviously. That is to say that given three states, C1, C2, and

C3, C1 ≤ C3 if C1 ≤ C2 and C2 ≤ C3.

013
014
032
042
312
412

043
034
432
342
314
413

r

C[2, 0] C[1, 0]

Figure 13. Mapping from codes in C[2,0] to those in C[1,0] for 3×5 AB game

4.2 Optimal Analyses for the Codebreaker and the

Codemaker

In this section, we divide the analyses into two parts. The first part discuss a

special kind of states C* that will be considered to determine the best query for the

codebreaker when he encounters this kind of states. Then, the discussion in the next

51

part will reveal that the special states that are discussed here just match the attribution

of states resulting from the devil’s strategy for the codemaker. Consequently, our

conclusions are attained finally.

4.2.1 Analyses of the Optimal Queries for the Codebreaker

Before the formal discussion, a critical concept should be clarified first.

Intuitively, the more secret codes a state has, the harder the codebreaker identifies a

secrete code in it. However, the rule is not absolutely correct especially when the size

of one state is very close to that of the other. Hence, the structural reduction is

adopted to determine the difficulties of two states instead of simply comparing their

sizes in the following discussion.

Suppose that S = {0, 1, 2, ..., n − 1} represents the set of symbols appearing in

3×n AB games. The set, B = {b0, b1, ..., bh-1}, is a subset of S, where bi ∈ S and |B| = h,

3 ≤ h ≤ n − 3. Moreover, another set, A, is defined as A = S − B = {a0, a1, ..., an-h-1},

whose cardinality is (n − h).

Assume that there is a special state, called C*, which consists of the secret codes

that are all possible permutations of h symbols in B. In other words, the special state

has h(h − 1) (h − 2) secret codes in it. This state may be regarded as a subproblem of a

3×n AB game, i.e. a 3×h AB game. Notice that the symbols in A do not appear in the

codes of the special state because of the definition of C*. We can intuitively treat the

symbols in A as those eliminated from previous responses made by the codemaker.

Now, imagine a scenario where C* is encountered for the codebreaker during the

process of playing a 3×n AB game. Since any symbols in S may be used in a query

made by the codebreaker for a 3×n AB game, all possible queries for the codebreaker

can be classified into four types according to the numbers of symbols that belong to A

and B. Thus, the four types of queries for the codebreaker are listed and discussed as

52

follows. Here we suppose that ai, aj, ak ∈ A and bi, bj, bk ∈ B.

1. aiajak

All symbols of this type of queries belong to A. If the codebreaker makes this kind

of queries, all eligible codes are then classified into the substate, C[0,0], trivially. So,

the queries of Type 1 are redundant and non-optimal results will be obtained if the

codebreaker chooses this kind of queries.

2. bkaiaj, aibkaj, and aiajbk

The queries of Type 2 contain two symbols in A and one symbol in B. This type of

queries can be further divided into three kinds of queries such as bkaiaj, aibkaj, and

aiajbk in accordance with their positions of symbols. Without loss of generality, g =

bkaiaj is taken to conduct the following analyses. The discussions of the other two

can be undertaken in a similar way. Three nonempty substates, which are C[1,0],

C[0,1], and C[0,0], are produced as the codebreaker makes the query g. Note that their

cardinality are (h − 1)(h − 2), 2(h − 1)(h − 2), and (h − 1)(h − 2)(h − 3) respectively.

Now, we can show that C[0,1] ≤ C[0,0] and C[1,0] ≤ C[0,0] if h ≥ 5.

Lemma 1. If the codebreaker encounters the state, C*, and then makes the query, g

= bkaiaj, aibkaj, or aiajbk, where ai, aj ∈ A and bk ∈ B, then C[0,0]

dominates C[0,1] and C[1,0] if h ≥ 5.

Proof. In order to prove that C[0,1] ≤ C[0,0], a structural reduction, r1, is defined as

{ } { }⎩
⎨
⎧

−′∈−=′∈ .,,and,where,
:

212

1
1

qpkqpqpkqp

qpqkp

bbBzzBBBbbzbbbbb
bzbbbb

r
a

a

From r1, it reveals that the structures of the secret codes, which are bp?bq and bpbq?,

are preserved after mapping. Note that bpz1bq and bpbqz2 should be distinct to

reserve the property of one-to-one mapping. We can achieve this by assigning the

symbols of z1 and z2 carefully while mapping is conducted. On the other hand, there

should be two symbols left for the assignments of z1 and z2 once bp and bq have
53

been fixed during the mapping. The proof is therefore correct if h ≥ 5. The proof of

C[0,1] ≤ C[0,0] is finished now. Afterwards, another structural reduction, r2, is defined

as

{ } { }.,and,where,: 112 qpkqpqpqpk bbBzbBBbbbbzbbbr −′∈−=′∈a

There should be one symbol left for the assignment of z1 once bp and bq have been

assigned. Hence, the proof is right if h ≥ 4. In other words, C[1,0] ≤ C[0,0]. From the

results of r1 and r2, we know that C[0,0] dominates C[0,1] and C[1,0] when h ≥ 5. This

completes the proof of Lemma 1.

3. aibjbk, bjaibk, and bjbkai

The queries of this type are composed of a symbol in A and two symbols in B.

These queries can also be further classified into three kinds of queries, i.e., aibjbk,

bjaibk, and bjbkai. Without loss of generality, g = aibjbk is choosen to undertake the

following discussions. Besides, the analyses of bjaibk and bjbkai can be derived in a

similar way and so, they are omitted here. There are six nonempty substates after

the codebreaker makes the query g. They are C[2,0], C[1,1], C[0,2], C[1,0], C[0,1], and

C[0,0] respectively. Note that their corresponding cardinality are (h − 2), 2(h − 2), (h

− 2), 2(h − 2)(h − 3), 4(h − 2)(h − 3), and (h − 2)(h − 3)(h − 4). Now, we show that

C[0,0] dominates the other five substates if h ≥ 8.

Lemma 2. If the codebreaker encounters C*, and then makes the query, g = aibjbk,

bjaibk, or bjbkai, where ai ∈ A and bj, bk ∈ B, then C[0,0] dominates C[0,1],

C[1,0], C[0,2], C[1,1], and C[2,0] when h ≥ 8.

Proof. Five structural reductions, called r3, r4, r5, r6, and r7, are defined as follows

to certify that C[0,1] ≤ C[0,0], C[1,0] ≤ C[0,0], C[0,2] ≤ C[0,1], C[1,1] ≤ C[1,0], and C[2,0] ≤

C[1,0] respectively.

54

{ }
{ }

⎪
⎪
⎩

⎪
⎪
⎨

⎧

−′∈
−=′∈

qpqkp

qpqpqpk

kjqpqpjqp

qpqpj

bzbbbb
bbBzzzzbbzbbb
bbBBbbzbbbbb

bbzbbb

r

4

43213

2

1

3 .,,,,and
,,where,

:

a

a

a

a

{ }
{ }⎩

⎨
⎧

−′∈
−=′∈

.,,and
,,where,

:
212

1
4

qpqpkqp

kjqpqpqjp

bbBzzzbbbbb
bbBBbbbzbbbb

r
a

a

{ }
{ }⎪

⎩

⎪
⎨

⎧

−′∈
−=′∈

.,,and
,where,:

3213

2

1

5

ppkjpk

kjpjpjkp

pjpkj

bBzzzzbbbbb
bbBBbbzbbbb

bzbbbb
r

a

a

a

{ }
{ }⎩

⎨
⎧

−′∈
−=′∈

.,and
,where,

:
212

1
6

pkpkpj

kjppjpjk

bBzzbbzbbb
bbBBbbbzbbb

r
a

a

{ } { }.and,where,: 117 pkjpjpkjp bBzbbBBbzbbbbbr −′∈−=′∈a

Note that z1bpbq, bpbqz2, z3bpbq, and bpz4bq in r3 should be distinct to reserve the

one-to-one mapping property. Likewise, bpz1bq and bpbqz2 in r4 should be distinct

and bjz1bp, bpz2bj, and bkbpz3 in r5 should also be distinct while z1bjbp and z2bpbk in

r6 have to be distinct as well. We can attain this with assigning these symbols of z1,

z2, z3, and z4 carefully when mapping is undertaken. In order to meet requirements

of the assignments of zi in r3, r4, r5, r6, and r7, the following conditions should be

maintained respectively: h ≥ 8, h ≥ 6, h ≥ 6, h ≥ 5, and h ≥ 4. Consequently, it is

true that C[0,0] dominates C[0,1], C[1,0], C[0,2], C[1,1], and C[2,0] while h ≥ 8. Hence, the

proof of Lemma 2 is completed.

4. bibjbk

All symbols of this kind of queries belong to B entirely. There are totally nine

nonempty substates, which are C[3,0], C[1,2], C[0,3], C[2,0], C[1,1], C[0,2], C[1,0], C[0,1], and

C[0,0] respectively, as the codebreaker makes the query, g = bibjbk. Notice that their

cardinality are 1, 3, 2, 3(h − 3), 6(h − 3), 9(h − 3), 3(h − 3)(h − 4), 6(h − 3)(h − 4),

55

and (h − 3)(h − 4)(h − 5) respectively. In the following statements, we would

certify that C[0,1] ≤ C[0,0], C[1,0] ≤ C[0,0], C[0,2] ≤ C[0,1], C[1,1] ≤ C[1,0], C[2,0] ≤ C[1,0], C[0,3]

≤ C[0,0], C[1,2] ≤ C[0,0], and C[3,0] ≤ C[0,0].

Lemma 3. As the codebreaker encounters C*, and then makes the query, g = bibjbk,

where bi, bj, bk ∈ B, then C[0,0] dominates C[0,1], C[1,0], C[0,2], C[1,1], C[2,0],

C[0,3], C[1,2], and C[3,0] when h ≥ 11.

Proof. Since the cardinalities of C[3,0], C[1,2], and C[0,3] are fixed numbers, then C[0,0]

trivially dominates C[3,0], C[1,2], and C[0,3] as long as there are at least three symbols

in B and thus, the three symbols can be permuted appropriately to map the three

substates. On the other hand, five definitions of structural reductions, which are

named as r8, r9, r10, r11, and r12, are provided as follows to confirm that C[0,1] ≤ C[0,0],

C[1,0] ≤ C[0,0], C[0,2] ≤ C[0,1], C[1,1] ≤ C[1,0], and C[2,0] ≤ C[1,0] respectively.

{ }
{ }

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−′∈
−=′∈

qpqkp

qpqpk

qpqpjqp

kjiqpqpqpj

qpiqp

qpqip

bzbbbb
bbzbbb

bbBzzzzzzzbbbbb
bbbBBbbbbzbbb

zbbbbb
bzbbbb

r

6

5

6543214

3

2

1

8 .,,,,,,and
,,,where,

:

a

a

a

a

a

a

{ }
{ }⎪

⎩

⎪
⎨

⎧

−′∈
−=′∈

.,,,and
,,,where,:

3213

2

1

9

qpqpkqp

kjiqpqpqjp

qpqpi

bbBzzzzbbbbb
bbbBBbbbzbbbb

bbzbbb
r

a

a

a

{ } { }

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪

⎨

⎧

−′∈−=′∈

ipikp

pkipk

pipik

pkjpk

pkjipkpjkp

pjpkj

ipipj

jpjip

pipij

bzbbbb
zbbbbb
bbzbbb
zbbbbb

bBzzbbbBBbzbbbbb
bzbbbb
bbzbbb
bzbbbb
bbzbbb

r

2

2

2

1

211

1

1

1

1

10 .,and,,where,:

a

a

a

a

a

a

a

a

a

56

{ } {

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−′∈−=′∈

kpkpj

kpkip

pjpjk

pkjipjpijp

pipki

pijpi

bbzbbb
bzbbbb
bbzbbb

bBzzbbbBBbzbbbbb
bzbbbb
zbbbbb

r

2

1

2

211

2

1

11

.,and,,where,
:

a

a

a

a

a

a

{ } { }
⎪
⎩

⎪
⎨

⎧

−′∈−=′∈

1

11

1

12 .and,,where,:
zbbbbb

bBzbbbBBbbbzbbb
bzbbbb

r

jpkjp

pkjipkpkpi

pipji

a

a

a

}

Note that each secret code in each structural reduction, i.e., r8, r9, r10, r11, and r12,

should be distinct from each other to reserve the one-to-one mapping property. This

can be attained by assigning these symbols of z1, z2, z3, z4, z5, and z6 carefully. On

the other hand, to satisfy each assignment of zi in r8, r9, r10, r11, and r12, the

following constraints have to be kept respectively: h ≥ 11, h ≥ 8, h ≥ 6, h ≥ 6, and h

≥ 5. So, it is therefore correct that C[0,0] dominates C[0,1], C[1,0], C[0,2], C[1,1], C[2,0],

C[0,3], C[1,2], and C[3,0] when h ≥ 11. Hence, the proof of Lemma 3 is completed.

After four kinds of queries for the codebreaker are discussed, only three kinds of

queries among them are useful since the first one causes non-optimal results trivially.

In order to simplify the notations, let C(2), C(3), and C(4) denote the hardest states

caused by queries of Type 2, Type 3, and Type 4 respectively. Hence, the difficulties

of these three states have to be determined to choose the best query for the

codebreaker. The following lemma therefore describes the phenomena.

Lemma 4. When the codebreaker encounters C*, the hardest states caused by queries

of Type 2, Type 3, and Type 4, i.e. C(2), C(3), and C(4), are produced. Thus,

we have C(4) ≤ C(3) ≤ C(2).

Proof. From the meanings of C(2), C(3), and C(4), it reveals that C(2) is composed of

secret codes that are permutations of (h − 1) symbols, and C(3) consists of what are

57

permutations of (h − 2) symbols while the codes in C(4) are permutations of (h − 3)

symbols. Let S(2), S(3), and S(4) denote the sets of symbols appearing in C(2), C(3), and

C(4) respectively. Then, let the symbols in S(2), S(3), and S(4) be sorted separately

according to the lexicographical order. A mapping is generated naturally if we map

each symbol in S(4) to that in S(3) one by one in sorted order. So does the mapping

between S(3) and S(2). Obviously, we have C(4) ≤ C(3) ≤ C(2). This proof is completed

entirely.

Concluding with Lemma 1, Lemma 2, Lemma 3, and Lemma 4, we have the

following lemma.

Lemma 5. For a special state, C*, which also represents a 3×h AB game (11 ≤ h ≤ n),

the optimal query for the codebreaker now is bibjbk, where bi, bj, bk ∈ B.

Proof. From Lemma 4, C(4) is the easiest state to identify a secret code compared to

C(2) and C(3). The goal of the codebreaker is to minimize the number of queries

required and so, the codebreaker has to choose the query which results in C(4) in the

worst situation. The optimal query for the codebreaker is therefore bibjbk.

4.2.2 The Devil’s Strategy for the Codemaker

Since the mission of the codebreaker aims to minimize the number of queries to

acquire a secret code, the codemaker tries to maximize the number of queries for the

codebreaker if he decides to implement a devil’s strategy. Hence, the worst case for

the codebreaker means that his opponent conducts a devil’s strategy (or called a worst

response for the codebreaker) in each ply during the gaming process in order to

maximize the number of queries. In the follow-up, a lemma is exhibited to

demonstrate what is the worst response for the codebreaker if he encounters a 3×h AB

game, where h ≤ n.

Lemma 6. For a 3×h AB game, where 11 ≤ h ≤ n, the codebreaker will require a

58

maximum number of queries to get the code while the codemaker

answers [0, 0] after the codebreaker’s query.

Proof. From Lemma 5, it is obvious that the codebreaker must choose bibjbk as a

query for a 3×h AB game. After the codebreaker makes the optimal query, nine

substates will be formed. These substates are C[0,0], C[0,1], C[1,0], C[0,2], C[1,1], C[2,0],

C[0,3], C[1,2], and C[3,0] respectively. C[0,0] dominates C[0,1], C[1,0], C[0,2], C[1,1], C[2,0],

C[0,3], C[1,2], and C[3,0] in accordance with the result of Lemma 3. In other words, C[0,0]

is the hardest substate among the nine ones. Conclusively, the codemaker must

response [0, 0] as his worst response and this will result in the worst case for the

codebreaker because of the maximum number of queries. The proof is therefore

finished.

4.3 An Illustrative Example of the Pessimistic Situation

In order to clarify the key idea of the pessimistic situation (worst case) of 3×n AB

games we have discussed above, a 3×20 AB game, which is a 3×n AB game while n =

20, is taken as an illustrative example. The scenario is shown in Figure 14. Suppose

that the set of symbols is S = {c0, c1, …, c19}. In the first ply, the codebreaker makes

the first query, c0c1c2, and the codemaker offers [0, 0] as the first response which is

the worst-case response. Thus, the 3×20 AB game reduces to a 3×h AB game, where

h = 17. The similar operations proceed at the second and third queries. After the third

query and third response, the original 3×20 AB game reduces to a 3×11 AB game.

The minimum number of queries can not be obtained easily with the use of analyses

when h ≤ 11 because of the irregular behavior. Hence, a branch-and-bound search

algorithm, which has been proposed in Chapter 2, is applied to find an optimal

strategy for smaller h.

59

Figure 14. The scenario of the pessimistic situation of a 3×20 AB game

4.4 Chapter Conclusion

From the above discussions, the optimal query for the codebreaker and the

adversary response for the codemaker, which refers to the worst case for the

codebreaker as well, are eventually obtained with the consideration of the special state

C*. In the follow-up, all results mentioned above will be concluded to derive a

theorem.

Theorem 2. For a 3×n AB game, the minimum number of queries for the

codebreaker in the worst case is

⎣ ⎦
()⎣ ⎦⎩

⎨
⎧

≥++
≤≤+
.8if,331

73if,33
nn

nn

Proof. At the beginning of a 3×n AB game, the n symbols are not used and then all

secret codes are all equivalent. As a result, a secret code is chosen randomly as the

first query for the codebreaker. Nine substates are therefore produced and [0, 0] is

taken as an adversary response according to Lemma 6. Afterwards, C[0,0], which

results from the first response, matches the attribution of the special state C* described

in Lemma 5. Thus, Lemma 5 can be applied to this state. We find that the situations
60

mentioned in Lemma 5 and Lemma 6 will appear alternately in the following gaming

process. So we have the following recurrence.

() () .11when,13 >+−= nnTnT

Because of the irregular behavior of a 3×n AB game with a smaller value of n, its

minimum number of queries can be obtained with the use of a branch-and-bound

search algorithm, which originates from Chapter 2, when n ≤ 11. After the use of

computer programs written with this approach, the minimum numbers of queries

required for the codebreaker in the worst case are obtained in several hours and they

are 4, 4, 4, 5, 5, 6, 6, 6, and 7 respectively when n = 3, 4, 5, 6, 7, 8, 9, 10, and 11. For

example, an optimal strategy for 3×7 AB game is considered with S = {0, 1, 2, 3, 4, 5,

6}. If the codemaker takes 165 as a secret code, a gaming process in the worst case

will be as follows: 012, [0, 1], 023, [0, 0], 041, [0, 1], 156, [1, 2], 165, [3, 0]. In other

words, the codebreaker requires 5 queries to identify 165 while playing the worst-case

optimal strategy.

We derive the above recurrence and conclude with the results of smaller values of

n. Hence, the closed form of the formula is exhibited as follows.

⎣ ⎦
()⎣ ⎦⎩

⎨
⎧

≥++
≤≤+
.8if,331

,73if,33
nn

nn

This completes the proof.

Partial results of 3×n AB games, 3 ≤ n ≤ 16, are summarized in Table 12. As 3×n

AB games have been solved successfully, a natural generalization is to explore the

techniques for m×n AB games, where m ≥ 4. This problem remains open.

Table 12. The minimum number of queries for 3×n AB games in the worst case

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
of queries 4 4 4 5 5 6 6 6 7 7 7 8 8 8

61

Chapter 5

Optimization Algorithm and

Verification Algorithm

This chapter introduces two algorithms, called the two-phase optimization

algorithm (TPOA) and pigeonhole-principle-based verification algorithm (PPV) to

investigate the game, AB game with an unreliable response. TPOA was proposed by

us in [17] and was proved to be an effective approximate algorithm for deductive

games. PPV is modified slightly from the pigeonhole-principle-based fast

backtracking algorithm in [37], which was also demonstrated by us. Section 5.1 gives

a comprehensive introduction for our problems while some notations are redefined

here to match the properties of the handled problem. Section 5.2 provides an

introduction to TPOA and its performance. In Section 5.2.3, PPV is illustrated and the

verified results are also shown. Section 5.4 contains the summary of our remarks.

5.1 Introduction

In this chapter, a variant of AB game, which is called AB game with an

unreliable response, is presented. The game is the same as 4×10 AB game in addition

to the concept of fault tolerance added to the variant. In other words, there is an

62

additional rule in the game ⎯ the codemaker is allowed to give at most a wrong

response. For example, it is a wrong response if the codemaker answers [1, 0] instead

of [1, 2] if the codemaker chooses “2134” as a secret code and the codebreaker makes

a query “0123”. Furthermore, the termination criterion of the game is modified in

order to fit in with the area of fault tolerance. That is, the game is over if there is only

one eligible code now. In short, it is not necessary for the codebreaker to figure out

the secret code but to acquire it in his mind.

AB game with an unreliable response has ever been studies by us [37]. That

results show that the upper bound of the required number of queries in this game is 9

while the lower bound of it is 8. Unfortunately, the two bounds are not the same and

then, two more effective algorithms will be exhibited in this chapter to decide the

exact bound of it.

 〈{0, 1, 2}, {}〉

g1,2 = 1

〈{0}, {1, 2}〉

g2,1 = 0

〈{1}, {0, 2}〉

g2,2 = 1

〈{2}, {0, 1}〉

g2,3 = 2

〈{}, {0}〉 〈{0}, {}〉 〈{}, {0, 1, 2}〉

g3,2 = 1

〈{}, {0, 1}〉

g3,1 = 0

〈{}, {1, 2}〉

g 3,2 = 1

〈{1}, {}〉 〈{}, {0, 1, 2}〉

g3,2 = 1

〈{ 2}, {}〉 〈{}, {2}〉

〈{}, {0}〉 〈{}, {1}〉 〈{}, {2}〉 〈{}, {0}〉 〈{}, {1}〉 〈{}, {2}〉 〈{}, {0}〉 〈{}, {1}〉 〈{}, {1}〉 〈{}, {2}〉

< = >

< = > < = > < = >

< = > < = > = > = >

Figure 15. A game tree for the 1×3 game with an unreliable response

In order to clarify the problem and our proposed methods precisely, here we

redefine some notations, which may have been defined in Chapter 1, to match the

properties of AB game with an unreliable response. Consequently, a simple number

63

guessing game, denoted 1×n games with an unreliable response, is taken as an

illustrative example to explain these new notations. In the 1×n games with an

unreliable response, the codemaker chooses a secret code c, c = {0, 1, 2, …, n − 1}.

After each query g made by the codebreaker, the codemaker gives him a response r, r

= {<, =, >}, i.e., they stand for g < s, g = s, and g > s. The codemaker is allowed to

give at most a wrong response in this game. The goal of the game is to obtain the

secret code by using as few queries as possible. We can represent the gaming process

as game-tree search. For instance, a game tree for the 1×3 game with an unreliable

response consisting of internal nodes and leaves is shown in Figure 15.

Definition 15. The state () ()10 , ii CC consists of two sets, which are composed of

eligible codes after the codebreaker makes the i-th query. The first set

 is the set of secret codes which satisfy all previous responses and

 represents the set of secret codes which satisfy all but one of the

previous responses. For example, the root in

()0
iC

()1
iC

Figure 15 is { } { },2,1,0 ,

which indicates that the elements in ()0
0C are 0, 1, and 2 while is

an empty set.

()1
0C

Definition 16. A weight, () ()()10 , ii CC , is a couple of natural numbers. The first

number is the size of the set ()0
iC and the second number is the size of

the set . For instance, the weight of the root in ()1
iC Figure 15 is (3, 0).

Definition 17. The query gi,j made by the codebreaker means that the query is the j-th

choice among all valid queries with respect to the current state and

64

(i−1) queries have been made previously. In Figure 15, “g3,2 = 1”

means that it is the third query and the query is 1.

Definition 18. There are 14 legal responses in AB game. After the codebreaker makes

the (i+1)-th query and the (i+1)-th response offered by the codemaker

is j, this query will divide each set of the current state () ()10 , ii CC into

14 subsets, () () 14,,2,1,, 1
,1

0
,1 K=++ jRR jiji . In other words,

 and . () ()014

1

0
,1 ij ji CR =

= +U () ()114

1

1
,1 ij ji CR =

= +U

Definition 19. A final state is the state which is () ()10 , ii CC and () () 110 =+ ii CC . In

other words, only one eligible code remains in the final state and the

game is over.

From the above definitions, the accurate relation of the states in each ply can be

derived. Suppose that the codemaker offers j as the (i+1)-th response after the (i+1)-th

query. The codebreaker has to consider whether the response j is correct or not. Hence,

there are two possible cases discussed below.

 If the response is correct, the states we have to consider now are therefore

 and . ()0
,1 jiR +

()1
,1 jiR +

 If the response is wrong, we need to think of this state, . ()U
jpp

piR
≠≤≤
+

,141

0
,1

Before the game starts, we know that ()0
0C is the set that contains all valid secret

codes and . From the two discussed cases, we have the following relations. () φ=1
0C

() ()0
,1

0
1 jii RC ++ = ,

() () ()
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

≠≤≤
+++ UU

jpp
pijii RRC

,141

0
,1

1
,1

1
1

65

During the gaming process, the secret codes, which dissatisfy the previous

responses just one time, will be moved from ()0
iC to ()1

iC . If the secret codes in ()1
iC

dissatisfy a response again in the future, we do not have to consider these codes in the

following plies.

5.2 Two-Phase Optimization Algorithm

The two-phase optimization algorithm (TPOA) was originally proposed by us to

solve Mastermind [17]. It is an approximate algorithm and is able to discover results

with higher quality. TPOA can also be thought as a general improver for heuristic

strategies. That is, given a heuristic, TPOA has higher chance to obtain results better

than those obtained by the heuristic. Moreover, it sometimes can achieve near-optimal

results that are difficult to find by the given heuristic.

In this section, we will attempt to apply TPOA to discover the upper bound of the

number of queries for AB game with an unreliable response. We first review the

properties of TPOA and the hashing collision group that is used in TPOA. Second, a

well-designed hashing function and the heuristic of evaluation are provided. Finally,

TPOA is utilized to address the game.

5.2.1 The Structure of TPOA

The search tree of TPOA, abbreviated to TPOA tree, is divided into two phases,

exploration and exploitation. The objective of exploration phase is to discover

promising partial solutions; on the other hand, the exploitation phase is to choose the

way that leads each of the partial solution to a “best” complete solution. Two

parameters, the branching factor k and the exploration depth d, are used to decide

how large the search space TPOA intends to explore. That is, the parameters

determine how many potential (promising) solutions that TPOA will exploit.

66

We [17] have presented two versions of TPOA, which are TPOA+ (k, d) and

TPOA*(k, d), in the previous study. Because a larger search space may be required to

get a better upper bound of the game, only TPOA+ (k, d) is adopted to investigate our

problem. TPOA+ (k, d) indicates TPOA with a branching factor of k and an

exploration depth of d. The TPOA+ (k, d) tree is shown in Figure 16. Given a TPOA

tree with an arbitrary height h, after level d the algorithm does a greedy search form

that node on. The number of potential solutions exploited in a TPOA+ (k, d) tree will

be kd.

k

...

k

...

k

......

k

...

k

...

...

Exploration
Phase

...

...

Exploitation
Phase

...

d

h-d

...

Figure 16. The construction for TPOA+ (k, d) tree

The structure and properties of TPOA are described now. Given parameters (k,d),

the sketch of a recursive procedure for TPOA is shown in Figure 17. TPOA can be

implemented by a modified exhaustive depth-first search on a TPOA tree. The main

modification to depth-first search is that at each visited node in the exploration phase

(within depth d), we consider only b branches and ignore other branches. In Figure 17,

TPOA+ has a fixed b (= k) in the exploration phase, as shown in line 3. In the
67

exploitation phase, TPOA+ has a fixed b = 1 in line 4. Therefore, TPOA+(k, d) is able

to prune a huge search space to a manageable size kd as shown in Figure 16. For AB

game, since the 14 response nodes at each level should be kept, the search space is

reduced to (14×k)d.

1
2
3
4
5
6
7

TPOA(k, d, b, c) {
l = Current_level();
If (c is a complete solution) Then Return c;
If (l < d) Then b = k;
 Else b = 1;
For (each move m ∈ M)

i = Hash(m);
HCGi ← HCGi ∪ {m};

// k, d: the given constants
// get the current level in the TPOA tree

// in the exploration phase
// in the exploitation phase
// M: the set of all next potential moves
// classify possible next moves to HCGs by a

hash function

8 B = {HCGj | HCGj is the top b groups that could obtain promising results};
9
10
11
12
13
14
15
16
17

For (each HCGi ∈ B)
ci = Choose(HCGi);
C = C ∪ { ci };

S ← ∅;
For (each ci ∈ C)

si = TPOA(k, d, b, ci);
 S ← S ∪ { si };
 c = Max si ∈ S (eval(si));
 Return c;
}

// B: the set of b selected HCGs
// ci: the selected representative for HCGi
// C: the set of b representatives ci in B
// S: the set of potential solutions from

descendant nodes
// recursively b-way search to find the best

solution from descendant nodes
// select the best solution discovered in S
// return c to the parent node.

Figure 17. The sketch of TPOA

Given two constants (k, d), the time complexity of TPOA+ (k, d), in terms of

number of nodes exploited, is kd (h − d), where h is the height of the game tree, i.e.,

the number of queries required in the worst case. This means that no matter how large

an instance of problem is given, TPOA can always obtain an approximate result by

appropriately selecting the parameters (k, d). Furthermore, depending on the

execution time and space allowed, the value of parameters (k, d) can be increased to

approach the optimal result. Now, the fundamental components of TPOA are

68

summarized as follows:

 A constructive heuristic for the problem at hand

 A hash function according to the heuristic

 Two parameters (k, d) to decide how large the search space TPOA intends to

explore

5.2.2 Hash Collision Groups

In TPOA, how to select the (most likely) best b next potential components is a

critical issue. The problem can be effectively and efficiently solved by a clustering

approach. TPOA performs clustering using a concept of hash collision groups [14],

which are abbreviated to HCGs. The next potential components of solutions with

similarity are clustered together in an HCG by a given hash function to the problem at

hand. That is, the potential components with the same hash value will be clustered

together. Section 5.2.3 will give detailed examples of how the clustering mechanism

works. Properties of HCGs are now described. Figure 18 illustrates the relation

between HCGs and equivalent classes in a search space of next potential components.

There are several advantages of using HCGs in TPOA. The important properties of

HCGs include:

 For two components in the same HCG, they are most likely equivalent. On

the other hand, for two equivalent components, they are definitely in the

same HCG.

 Given a hash function, it is efficient to obtain the b best HCGs.

 Without losing the generality, an arbitrary component can be chosen to

represent its HCG.

Therefore, TPOA is able to efficiently and effectively select the b “best”

representatives among all next potential components. On the other point of view, if an

69

evaluation function is used in TPOA, each HCG can be regarded as a set of the next

potential components which have a tie on the return value of the function. Note that

most ties are equivalent but equivalent solutions will produce ties.

Components

Equivalent classes

HCGs

Figure 18. The relation between HCGs and equivalent classes

5.2.3 TPOA for AB game with an Unreliable Response

In this section, TPOA will be applied to our problem, AB game with an

unreliable response. Figure 19 shows the game tree by applying the TPOA to this

problem. Among them, () ()1
,

0
, , jiji CC is the j-th state, i.e., the j-th class (response), after

the i-th query. And gi,j is the j-th among the k best codes chosen by the TPOA at the

i-th query.

According to the hashing function, which will be demonstrated in Section 5.2.4,

all valid queries are categorized into several HCGs and the representative of each

HCG is evaluated in order to select k best codes as the explored queries. The designed

hashing function and the heuristic of evaluation are described in detail in the next

subsection.

In the beginning, the initial state is the root of the game tree in Figure 19, which

means that there are totally 5040 queries satisfying all previous responses. Note that

while the codebreaker takes the first query into account, TPOA chooses the k best

codes, g1,1, g1,2, …, g1,k, to conduct this search. After that, there are 14 classes which

have to be expanded since the codemaker has 14 legal responses. Then the
70

codebreaker selects k best queries to expand the game tree again after the first

response is determined. The two steps take turns until the final state is met. At final

state, the program backtracks to its parent node and expands other branches

continuously.

14 classes

[4,0] 3,0] 2,2] [0,0] [[2,1] [

• • •

g2,1 g2,k g2,2

k queries

()0
iC : the set of eligible codes which satisfy all previous responses
()1
iC : the set of eligible codes which satisfy all but one previous responses

• • •

() ()

14 classes

• • •

0 1
00 ,CC

() ()1
1,1

0
1,1 ,CC () ()1

2,1
0
2,1 ,CC () ()1

3,1
0
3,1 ,CC () ()1

4,1
0
4,1 ,CC () ()1

14,1
0
14,1 ,CC

() ()1
1,2

0
1,2 ,CC () ()1

2,2
0
2,2 ,CC () ()1

14,2
0
14,2 ,CC

• • •

• • •

g1,1 g1,k g1,2

k queries

• • •

• • •
() ()1

1,
0
1, , dd CC () ()1

2,
0
2, , dd CC () ()1

14,
0
14, , dd CC

• • •

• • •

• • •

• • •

gd+1,1

1 query

gd+1, 1 gd+1 ,1

1 query 1 query

Exploration Phase

Exploitation Phase

Figure 19. The game tree expanded by TPOA

71

5.2.4 The Hashing Function and the Heuristic of Evaluation

Now, a hashing function is designed carefully and a simple heuristic proposed by

Barteld [6] is utilized to cooperate with TPOA. Although the two methods are

uncomplicated, they are adequate to solve our problem.

Hashing function for TPOA:

Suppose given a state, () ()10 , ii CC , let the sizes of the 14 response classes (states),

which result from , after a query g be ()0
iC () () () ()0

14,1
0

2,1
0

1,1
0 ,,, +++= iiig RRRS K while the

sizes of the 14 response classes (states) resulting from ()1
iC , after a query g is

() () () ()1
14,1

1
2,1

1
1,1

1 ,,, +++= iiig RRRS K . Afterwards, the hash function sorts the original two

sequences, and , into nonincreasing sequences, ()0
gS ()1

gS ()0
gS and ()1

gS ,

independently. The hash function is therefore defined as follows:

() ()() () () ,,, 1010
gggg SSSSHash =

In other words, assume that two queries, g and p, are considered. If () ()00
pg SS = and

() ()11
pg SS = , then the query g and the query p are classified into the same HCG.

Remember that we also guarantee the fundamental properties of the designed

hashing function that (1) for two components in the same HCG, they are most likely

equivalent, and that (2) for two equivalent components, they are definitely in the same

HCG. Therefore, we can arbitrarily choose a secret code to represent its HCG, rather

than exhaustively explore all secret codes in the HCG, and obtain an approximate

result.

Heuristic of evaluation:

In the previous analyses, the height of the game tree has to be minimized so as to

obtain the optimal strategy for the game in the worst case. However, it is not intuitive

72

to determine the significance between the number of codes in ()0
iC and that of codes

in . Hence, a simple and efficient heuristic, called “most-parts heuristic”,

demonstrated by Barteld

()1
iC

[6] is used in TPOA. The most-parts heuristic focuses on the

“breadth” the eligible secret codes can be spread. In other words, the more classes the

eligible secret codes can occupy after a query, the more favorable this query is.

Because a state in our problem has two sets, e.g., () ()10 , ii CC , the most-parts

heuristic has to sum up the number of the nonzero numbers in and that of

nonzero numbers in according to a query g. The higher the score is, the better

the query is. For example, the query g is better than the query p if the numbers of

parts caused by g and p are 24 and 18 respectively.

()0
gS

()1
gS

5.2.5 Experiment Results of TPOA

When our program based on TPOA was implemented and tested, we ran it on a

dedicated PC equipped with an Intel Core 2 Duo CPU whose frequency is 3.16 GHz.

In order to accelerate the running time of TPOA furthermore, another technique is

implemented as well. That is, during the searching process, TPOA will terminate as

soon as it has found a strategy, in which the minimum number of queries is 8 in the

worst case. Thus, this may reduce the necessity to search all the possible pathways in

the search space shown in Figure 19, and result in faster finish time.

The results are shown in Table 13. Basically, the larger the values of k and d are,

i.e., the larger the search space is, the fewer the number of queries required for the

game is, and the longer the time for running the program is. However, the results in

Table 13 do not always seem to show this trend. This is because by using the above

speed-up technique, TPOA stops if a strategy with 8 queries required in the worst case

is found. In other words, TPOA will stop more quickly if the order of the traversal
73

sequences of the k queries in each ply is decided carefully. In our program, the order

of the traversal sequences is completely determined by the most-parts heuristic to

choose the k best queries in each ply. From the results in Table 13, it reveals that the

most-parts heuristic is quite outstanding because the running time is shorter when k =

7 and d = 7.

Table 13. The upper bound derived by our program

k d The number of queries in the worst case Running time (Minutes)
1 1 10 3.96
2 6 10 21.60
3 3 10 28.43
5 4 9 319.47
5 5 9 641.47
7 7 8 13.87

Note that the number of queries, whose value is 8, is obtained by our program

when k = 7 and d = 7. This shows that the TPOA can efficiently obtain optimal (or

near-optimal) results with a small k and d (compared to 5040 valid queries). Hence,

we have the following Lemma 7 evidently.

Lemma 7. For AB game with an unreliable response, there exists a strategy such that

the number of queries required for the codebreaker to obtain the secret

code is at most 8.

We can regard Lemma 7 as an upper bound of this problem. In the following

section, we demonstrate the pigeonhole-principle-based verification algorithm to

prove that the lower bound of the game is also 8.

5.3 Pigeonhole-principle-based Verification Algorithm

In our previous study [37], we have proposed a pigeonhole-principle-based fast

backtracking algorithm (PPBFB) to obtain the lower bound of our problem in about 5

74

days using an AMD Opteron 1.6GHz PC. Here, the concept of PPBFB will be

reviewed first and then, the reductions of equivalent queries (Technique 3 in Section

3.2.2.3) are also cooperated with PPBFB to accelerate the speed of the verification.

The refined version of PPBFB is called pigeonhole-principle-based verification

algorithm (PPV). Finally, the lower bound is also acquired by PPV in only 12.83

minutes using an Intel Core 2 Duo 3.16 GHz PC.

The concept of PPBFB is to conduct an exhaustive worst-first search. It rates the

lower bound by making use of the extended pigeonhole principle proposed by us [18]

and then backtracks as early as possible to save the search time. The refined version

of PPBFB, PPV, is illustrated in Figure 20. The key idea of PPV is to consider the

sizes of the two sets in the state when the search proceeds. The rectangles in Figure 20

represent the states. is the i-th possible choice among all secret codes made by

the codebreaker at the p-th query. rp, max means the class which results in the most

number of queries among 14 classes after the p-th query. qmax is the theoretical lower

bound which means a fewest number of queries required to reach the final state, i.e.,

pig ,

{ } φ,c or { }c,φ , from the current state and h is the lower bound we intend to

verify.

Theoretically, a search algorithm has to explore all valid 5040 secret codes at

each query. However, in fact, PPV only need to explore 1 representative query at the

first query, to expand 20 queries at the second query, and to expand 356.50 queries in

average at the third query due to the equivalence property. For the codemaker, only

the worst case among the 14 classes has to be expanded. The so-called “worst case”

denotes the class which will result in the most number of queries needed by the

codebreaker.

75

Figure 20. The sketch of the PPV algorithm

76

The extended pigeonhole principle [18] is employed to estimate the lower bounds

of the number of queries needed among 14 classes. The idea of the estimations of

lower bounds is similar to that proposed in Chapter 2. In other words, the actual

number of queries needed is more than or equal to the most number, qmax, of lower

bounds among 14 classes. Therefore, our verification program is not necessary to

search the whole game tree. It can backtrack to the parent node to expand other

branches if the condition holds: () hqp ≥+ max , where we set h = 8.

The main idea of the estimation of lower bounds by using the extended

pigeonhole principle is that the query made by the codebreaker in each ply may divide

the elements of the two sets in the current state evenly. Hence, this ideal strategy can

minimize the height of subtree rooted in the current node. That is to say that there

exists a “theoretical optimal” strategy for the codebreaker in the following queries

such that all the elements of the two sets in each state may be divided evenly. The

actual number of queries is thus more than or equal to the value of estimations. Note

that we use the function, Get_lower_bound, to rate the lower bounds in Figure 20.

The detailed calculation of the lower bounds, the entire algorithms, and other

improvements can be found in [37][38]. Hence, the details are omitted here.

After the careful implementation of our program based on PPV, The verification

program was run on a dedicated PC equipped with an Intel Core 2 Duo 3.16 GHz

CPU to verify the lower bound required for AB game with an unreliable response. If

we set the value of h, which indicates the lower bound we want to verify, to 8, our

program executed for about 12.83 minutes and the final output is “success!” finally.

In other words, the minimum number of queries is at least 8 in the worst case

without respect to any strategies used by the codebreaker. Note that the upper bound

of this problem is obtained in Lemma 7 as well. Thus, we have the following theorem

which shows that the lower bound as well as the exact bound of the game is 8.
77

Theorem 3. For AB game with an unreliable response, 8 queries are necessary and

sufficient to identify a secret code in the worst case.

5.4 Chapter Conclusion

This chapter utilizes two advanced algorithms to address AB game with an

unreliable response. The first one is two-phase optimization algorithm (TPOA). With

the well-designed hashing function and the simple heuristic of evaluation, the results

obtained by TPOA are better than those of the previous work [37]. In other words,

TPOA is more effective and efficient. Note that the upper bound of the game is

declined from 9 to 8 in this refined approach.

On the other hand, another improvement, pigeonhole-principle-based verification

algorithm (PPV), is modified from pigeonhole-principle-based fast backtracking

algorithm (PPBFB). PPV uses equivalent properties to reduce the branching factors at

the first three queries. Although the final outcome is the same as that in [37], the

speed of PPV is faster than PPBFB due to the reductions of equivalent queries.

Moreover, the lower bound provided by PPV is 8 as well.

Fortunately, we have proved that the upper bound of the game matches the lower

bound while its value is 8. Hence, the minimum number of queries for AB game with

an unreliable response is 8. Furthermore, it may be interesting to deal with AB game

with e unreliable responses, where e ≥ 2.

78

Chapter 6

Conclusion and Future Work

In this dissertation, some optimization approaches for deductive games and their

variants are taken into account. Section 6.1 concludes with the proposed optimization

algorithms and our contributions. Some future work is mentioned in Section 6.2.

6.1 Concluding Remarks

Two advanced algorithms and a reduction technique for deductive games are

demonstrated in this study. Moreover, two promising algorithms, which are proposed

before, with some modifications are introduced to solve our addressed problem as

well. We summarize our main novel contributions:

(1) A more efficient complete algorithm, which is called depth-first

backtracking algorithm with branch-and-bound pruning (DBB) for

Mastermind in the expected case, is introduced to take the place of

traditional approaches and meanwhile, an admissible heuristic, which can

be applied to various deductive games, is presented as well. From the

experiments, DBB is significantly superior to the traditional algorithms and

an alternative optimal strategy is also obtained finally.

(2) To date, there have been no optimal expected-case strategies for AB game

in formal literature since its appearance. Thus, a refined branch-and-bound

79

algorithm with speed-up techniques (RBB) is demonstrated to deal with this

problem. A tactic for playing AB game optimally in the expected case is

eventually attained by utilizing RBB and in addition, the corresponding

expected number of queries, 26274/5040 ≈ 5.213, is derived.

(3) A sophisticated method, called structural-reduction approach (SR), which

aims at explaining the pessimistic situation in this game, is presented to

investigate 3×n AB games. After careful theoretical analyses, optimal

strategies for the codebreaker in the pessimistic situation are discovered.

Furthermore, a worthwhile formula for calculating the optimal numbers of

queries required for arbitrary values of n is derived and proven

successfully.

(4) Two algorithms, which are named as two-phase optimization algorithm

(TPOA) and pigeonhole-principle-based verification algorithm (PPV), are

surveyed for solving AB game with an unreliable response. The purpose of

TPOA is to discover an upper bound of the required number of queries in

this game while PPV aims at identifying a lower bound of it. Fortunately,

experimental results show that the upper bound equals the lower bound and

then, the exact bound of the number of queries needed, whose value is 8, is

achieved.

From the survey of related papers, it reveals that the search space of many games

and optimization problems are often so huge that traditional search algorithms are not

able to explore it efficiently. Of course, there were plenty of pruning techniques,

which were proposed before. However, slight inaccuracy of the measures of these

pruning techniques may usually lead to the poor results that are far from the optimum.

In this study, our proposed search algorithms, which are replied upon the

admissible heuristics, have contributed success to various deductive games. Note that
80

in general, the admissible heuristics can be regarded as a kind of theoretical pruning

techniques since the pruning occurs but does not affect the correctness of search

algorithms. In other words, the results of the search algorithms are accurate if the

pruning techniques are based on theoretical analyses. Hence, it may be a trend to

combine search algorithms with theoretical pruning for solving those complicated

problems.

On the other hand, other optimization problems such as coding theory, circuit

testing, differential cryptanalysis, and additive search problem may also be solved by

taking advantage of our demonstrated methods with modifications in the future. We

hope that the research results may assist other scientists with the development of their

concerned issues.

6.2 Future Work

There are still some open issues regarding our problem domain. The optimal

strategies of deductive games with much higher dimensions, which are called m×n

AB games while m ≥ 4, are still unknown. It is interesting to investigate them because

they may become NP-complete problems or harder problems if the value of m is

getting larger constantly. Then, the boundary value of m is significant as well. Besides

the original versions of much higher dimensions, other variants of deductive games

are also worth studying such as static deductive games or deductive games with

multiple unreliable responses. From the progress of research, 3×n deductive games in

the expected case and 4×n deductive games in the worst case may be solved

completely in the near future.

There are other important problems such as the Renyi-Ulam game and the

counterfeit coin problem, whose styles are similar to deductive games. In fact, the

Renyi-Ulam game has been widely surveyed in the fault-tolerance area and
81

meanwhile, the counterfeit coin problem has been discussed constantly in the

information-theory area as well. However, there are still a lot of open issues about the

two significant problems. These open questions are likewise worth studying in further

detail for discovering their solutions.

82

Bibliography

[1] Allen, J. (1989), “A Note on the Computer Solution of Connect-Four,” Heuristic
Programming in Artificial Intelligence 1: The First Computer Olympiad, pp.
134–135.

[2] Allis, L. V. (1988), A knowledge-based approach of Connect-Four—the game is
solved: white wins, Master's thesis, Vrije Universiteit, Amsterdam, The
Netherlands.

[3] Allis, L. V. (1994), Searching for solutions in artificial intelligence, PhD
Dissertation, Universiteit Maastricht, Maastricht, The Netherlands.

[4] Appel, K., and Haken, W. (1977), “Every planar map is four colorable part I:
discharging,” Illinois Journal of Mathematics, Vol. 21, pp. 429–490.

[5] Appel, K., Haken, W., and Koch, J. (1977), “Every planar map is four colorable
part II: reducibility,” Illinois Journal of Mathematics, Vol. 21, pp. 491–567.

[6] Barteld, K. (2005), “Yet another Mastermind strategy,” ICGA Journal, Vol. 28,
No. 1, pp. 13–20.

[7] Bento, L., Pereira, L., and Rosa, A. (1999), “Mastermind by evolutionary
algorithms,” Proceedings of the 1999 ACM symposium on Applied computing,
San Antonio, Texas, USA, 28 February-2 March, pp. 307–311.

[8] Berghman, L., Goossensa, D., and Leus, R. (2009), “Efficient solutions for
Mastermind using genetic algorithms,” Computers and Operations Research, Vol.
36, No. 6, pp. 1880–1885.

[9] Bernier, J. L., Herráiz, C. I., Merel, J. J., Olmeda, S., and Prieto, A. (1996),
“Solving Mastermind using GAs and simulated annealing: a case of dynamic
constraint optimization,” Parallel Problem Solving from Nature (PPSN IV),
Lecture Notes in Computer Science, Vol. 1141, pp. 554–563.

[10] Billings, D., Papp, D., Peña, L., Schaeffer, J., and Szafron, D. (1999), “Using
selective-sampling simulations in poker,” Proceedings of AAAI Spring
Symposium on Search Techniques for Problem Solving under Uncertainty and
Incomplete Information, Stanford, CA, USA, March, pp. 13–18.

[11] Bjornsson, Y., and Marsland, T. A. (2001), “Multi-cut alpha-beta pruning in
game-tree search,” Theoretical Computer Science, Vol. 252, No. 1, pp. 177–196.

[12] Blum, C., and Roli, A. (2003), “Metaheuristics in combinatorial optimization:
overview and conceptual comparison,” ACM Computing Surveys, Vol. 35, No. 3,
pp. 268–308.

[13] Bresina, J. L. (1996), “Heuristic-biased stochastic sampling,” Proceedings of the
Thirteenth National Conference on Artificial Intelligence and Eighth Innovative
Applications of Artificial Intelligence Conference, Oregon, Portland, 4-8 August,
pp. 271–278.

83

[14] Chen, S. T. (2004), On the Study of Optimization Algorithms for Deductive
Games and Related Problems. PhD Dissertation, National Taiwan Normal
University, Taipei, Taiwan.

[15] Chen, S. T., Hsu, S. H., and Lin, S. S. (2004), “Optimal algorithms for 2×n AB
games - a graph-partition approach,” Journal of Information Science and
Engineering, Vol. 20, No. 1, pp. 105–126.

[16] Chen, S. T., Hsu, S. H., and Lin, S. S. (2004), “Optimal algorithms for 2×n
Mastermind games - a graph-partition approach,” Computer Journal, Vol. 47, No.
5, pp. 602–611.

[17] Chen, S. T., Lin, S. S., and Huang, L. T. (2007), “A two-phase optimization
algorithm for Mastermind,” Computer Journal, Vol. 50, No. 4, pp. 435–443.

[18] Chen, S. T., Lin, S. S., Huang, L. T., and Hsu, S. H. (2007), “Strategy
optimization for deductive games,” European Journal of Operational Research,
Vol. 183, No. 2, pp. 757–766.

[19] Colorni, A., Dorigo, M., Maffioli, F., Maniezzo, V., Righini, G., and Trubian, M.
(1996), “Heuristics from nature for hard combinatorial optimization problems,”
International Transactions in Operational Research, Vol. 3, No. 1, pp. 1–21.

[20] Coulom, R. (2006), “Efficient selectivity and backup operators in Monte-Carlo
tree search,” Proceedings of the 5th Conference on Computers and Games, Turin,
Italy, 29-31 May, pp. 72–83.

[21] Donninger, C. (1993), “Null move and deep search: selective-search heuristics
for obtuse chess programs,” ICCA Journal, Vol. 16, No. 3, pp. 137–143.

[22] Dorigo, M., and Gambardella, L. M. (1997), “Ant colony system: A cooperative
learning approach to the traveling salesman problem,” IEEE Transactions on
Evolutionary Computation, Vol. 1, No. 1, pp. 53–66.

[23] Drakard, K. (1998), “Mastermind: WebGames,” Internet: http://www.irt.org/
games/js/mind/.

[24] Feo, T. A., and Resende, M. G. C. (1995), “Greedy randomized adaptive search
procedures,” Journal of Global Optimization, Vol. 6, No. 2, pp. 109–133.

[25] Flood, M. M. (1988), “Sequential search strategies with Mastermind variants —
Part 1,” Journal of Recreational Mathematics, Vol. 20, No. 2, pp. 105–126.

[26] Glover, F. (1986), “Future paths for integer programming and links to artificial
intelligence,” Computers and Operations Research, Vol. 13, No. 5, pp. 533–549.

[27] Glover, F. (1990), “Tabu search Part II,” ORSA Journal on Computing, Vol. 2, No.
1, pp. 4–32.

[28] Goddard, W. (2004), “Mastermind revisited,” Journal of Combinatorial
Mathematics and Combinatorial Computing, Vol. 51, pp. 215–220.

[29] Goddard, W. (2003), “Static Mastermind,” Journal of Combinatorial

84

Mathematics and Combinatorial Computing, Vol. 47, pp. 225–236.
[30] Goodrich, M. T. (2009), “On the algorithmic complexity of the Mastermind game

with black-peg results,” Information Processing Letters, Vol. 109, No. 13, pp.
675–678.

[31] Greenwell, D. (1999-2000), “Mastermind,” Journal of Recreational Mathematics,
Vol. 30, pp. 191–192.

[32] Hales, T. C. and Ferguson, S. P. (2006), Discrete and Computational Geometry,
Vol. 36, No. 1.

[33] Harvey, W. D., and Ginsberg, M. L. (1995), “Limited discrepancy search,”
Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, Montréal, Québec, Canada, 20-25 August, pp. 607–613.

[34] Heinz, E. A. (2000), “AEL Pruning,” ICGA Journal, Vol. 23, No. 1, pp. 21–32.
[35] Helmstetter, B., and Cazenave, T. (2003), “Searching with analysis of

dependencies in a solitaire card game,” van den Herik, H. J. Iida, H. and Heinz, E.
A. (eds), Advances in Computer Games 10, Kluwer Academic Publishers,
Netherlands.

[36] Holland, J. H. (1975), Adaptation in natural and artificial systems. University of
Michigan Press. Ann Arbor.

[37] Huang, L. T. (2005), On the study of deductive games with lies, Master's thesis,
National Taiwan Normal University, Taipei, Taiwan.

[38] Huang, L. T., Chen, S. T., and Lin, S. S. (2006), “Exact-bound analyses and
optimal strategies for Mastermind with a lie,” Lecture Notes in Computer Science,
Advances in Computer Games 11, Vol. 4250, pp. 195–209.

[39] Irving, R. W. (1978-79), “Towards an optimum Mastermind strategy,” Journal of
Recreational Mathematics, Vol. 11, No. 2, pp. 81–87.

[40] Jäger, G., and Peczarski, M. (2009), “The number of pessimistic guesses in
generalized Mastermind,” Information Processing Letters, Vol. 109, No. 12, pp.
635–641.

[41] Juill´e, H., and Pollack, J. B. (1998), “A sampling-based heuristic for tree search
applied to grammar induction,” Proceedings of the Fifteenth National Conference
on Artificial Intelligence, Madison, Wisconsin, USA, 26-30 July, pp. 776–783.

[42] Kabatianski, G., and Lebedev, V. (2000), “The Mastermind game and the rigidity
of the Hamming space,” Proceedings of the 2000 IEEE International Symposium
on Information Theory, Sorrento, Italy, 25-30 June, pp. 375–375.

[43] Kalisker, T., and Camens, D. (2003), “Solving Mastermind using genetic
algorithms,” Genetic and Evolutionary Computation — GECCO 2003, Lecture
Notes in Computer Science, Vol. 2724, pp. 1590–1591.

[44] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983), “Optimization by

85

simulated annealing,” Science, Vol. 220, No. 4598, pp. 671–680.
[45] Knuth, D. E. (1976), “The computer as Mastermind,” Journal of Recreational

Mathematics, Vol. 9, No. 1, pp. 1–6.
[46] Ko, K. I., and Teng, S. C. (1986), “On the number of queries necessary to

identify a permutation,” Journal of Algorithms, Vol. 7, No. 4, pp. 449–462.
[47] Koyama, K., and Lai, T. W. (1993), “An optimal Mastermind strategy,” Journal

of Recreational Mathematics, Vol. 25, No. 4, pp. 251–256.
[48] Labat, J. M., and Pomerol, J. C. (2003), “Are Branch and Bound and A*

Algorithms Identical,” Journal of Heuristics, Vol. 9, No. 2, pp. 131–143.
[49] Land, A. H., and Doig, A. G. (1960), “An automatic method of solving discrete

programming problems,” Econometrica, Vol. 28, No. 3, pp. 497–520.
[50] McKay, B. D. (1998), “Isomorph-free exhaustive generation,” Journal of

Algorithms, Vol. 26, No. 2, pp. 306–324.
[51] Merelo-Guervos, J. J., Castillo, P., and Rivas, V. M. (2006), “Finding a needle in

a haystack using hints and evolutionary computation: the case of evolutionary
MasterMind,” Applied Soft Computing, Vol. 6, No. 2, pp. 170–179.

[52] Neapolitan, R. and Naimipour, K. (2004), Foundations of Algorithms Using C++
Pseudocode. 3rd edn. Jones and Bartlett Publishers.

[53] Neuwirth, E. (1982), “Some strategies for Mastermind,” Mathematical Methods
of Operations Research, Vol. 26, No. 1, pp. 257–278.

[54] Norvig, P. (1984), “Playing Mastermind optimally,” ACM SIGART Bulletin, No.
90, pp. 33–34.

[55] Pitsoulis, L. S., and Resende, M. G. C. (2002), “Greedy randomized adaptive
search procedure,” In P. Pardalos, and M. Resende, (eds), Handbook of Applied
Optimization. Oxford University.

[56] Prieditis, A., and Davis, R. (1995), “Quantitatively relating abstractness to the
accuracy of admissible heuristics,” Artificial Intelligence, Vol. 74, No. 1, pp.
165–175.

[57] PYVA-NET (2000), “Pyva net!,” Internet: http://pyva.net/eng/play/bk.html.
[58] Roche, J. R. (1997), “The value of adaptive questions in generalized

Mastermind,” Proceedings of the 1997 IEEE International Symposium on
Information Theory, Ulm, Germany, 29 June- 4 July, pp. 135–135.

[59] Rosu, R. (1999), Mastermind, Master's thesis, North Carolina State University,
Raleigh, North Carolina.

[60] Ruiz, R., and StÄutzle, T. (2007), “A simple and effective iterated greedy
algorithm for the permutation flowshop scheduling problem,” European Journal
of Operational Research, Vol. 177, No. 3, pp. 2033–2049.

[61] Ruml, W. (2001), “Incomplete tree search using adaptive probing,” Proceedings

86

of the Seventeenth International Joint Conference on Artificial Intelligence,
Seattle, Washington, USA, 4-10 August, pp. 235–241.

[62] Russell, S. and Norvig, P. (2002), Artificial Intelligence: A Modern Approach. 2nd
edn. Prentice-Hall.

[63] Schaeffer, J., Burch, N., Björnsson, B., Kishimoto, A., Müller, M., Lake, R., Lu,
P., and Sutphen, S. (2007), “Checkers is solved,” Science, Vol. 317, No. 5844, pp.
1518–1522.

[64] Sedgewick, R. (1988), Algorithms. 2nd edn. Addison-Wesley.
[65] Seiden, S. (2002), “A manifesto for the computational method,” Theoretical

Computer Science, Vol. 282, No. 2, pp. 381–395.
[66] Seiden, S. (2001), “Can a computer proof be elegant,” ACM SIGACT News, Vol.

32, No. 1, pp. 111–114.
[67] Shapiro, E. (1983), “Playing Mastermind logically,” ACM SIGART Bulletin, No.

85, pp. 28–29.
[68] Singley, A. (2005), Heuristic solution methods for the 1-dimensional and

2-dimensional Mastermind problem, Master's thesis, University of Florida.
[69] Spencer, J. (1983), “Short theorems with long proofs,” American Mathematical

Monthly, No. 90, pp. 365–366.
[70] Stuckman, J., and Zhang, G. Q. (2006), “Mastermind is NP-complete,”

INFOCOMP - Journal of Computer Science, Vol. 5, No. 2, pp. 25–28.
[71] Swaszek, P. (1999), “The mastermind novice,” Journal of Recreational

Mathematics, No. 30, pp. 193–198.
[72] Temporel, A., and Kovacs, T. (2003), “A heuristic hill climbing algorithm for

Mastermind,” UKCI ’03, Proceedings of the 2003 UK Workshop on
Computational Intelligence, pp. 189–196.

[73] Ugurdag, H., Sahin, Y., and Baskirt, O. (2006), “Population-based FPGA solution
to Mastermind game,” AHS, Proceedings of the first NASA/ESA conference on
Adaptive Hardware and Systems, pp. 237–246.

[74] Zobrist, A. L. (1970), “A new hashing method with applications for game
playing,” Technical Report 88, Department of Computer Science, University of
Wisconsin, Madison, USA. Also in ICGA Journal (1990), Vol. 13, No. 2, pp.
69–73.

87

Appendix A. Equivalence Transformations for

AB Game at the Second Query
The following equivalence transformations for the second query of AB game

transform the 209 codes into their corresponding representatives.

Table 14. Equivalence transformations

Order Representative
Each

query
Equivalence transformations

1 0123 - -

0213 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

0321 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

1023 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541032
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1032
3210

P

2103 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542031
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2031
3210

P

2 0132

3120 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543021
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

3 4567 - -

0312 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

1203 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542103
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2103
3210

P

1320 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543102
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3102
3210

P

2013 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541203
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1203
3210

P

2130 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543201
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3201
3210

P

3021 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541302
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1302
3210

P

4 0231

3102 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542301
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2301
3210

P

88

2301 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P
5 1032

3210 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

1302 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

2031 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541320
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P

2310 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

3012 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541230
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1230
3210

P

6 1230

3201 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

0143 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

0423 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541320
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P7 0124

4123 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540321
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0321
3210

P

4156 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543201
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3201
3210

P

4526 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543102
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3102
3210

P8 0456

4563 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542103
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2103
3210

P

0425 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

0453 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

4125 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543021
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

4153 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542031
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2031
3210

P

9 0145

4523 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541032
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1032
3210

P

10 1456 2456 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876453120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

89

3456 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9875462130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

4056 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543201
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3201
3210

P

4256 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876453021
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

4356 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9875462031
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2031
3210

P

4506 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543102
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3102
3210

P

4516 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876453012
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3012
3210

P

4536 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9875461032
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1032
3210

P

4560 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542103
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2103
3210

P

4561 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876452013
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2013
3210

P

4562 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9875461023
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1023
3210

P

0142 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

0243 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

0324 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

0413 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541230
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1230
3210

P

0421 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541320
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P

1423 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541032
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1032
3210

P

2143 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542031
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2031
3210

P

3124 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543021
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

11 0134

4023 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540132
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0132
3210

P

90

4103 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540231
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0231
3210

P

4120 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540321
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0321
3210

P

0345 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876452310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

0415 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

0435 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876451320
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P

0451 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

0452 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876451230
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1230
3210

P

1425 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543102
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3102
3210

P

1453 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542103
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2103
3210

P

2145 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543201
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3201
3210

P

2453 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876451203
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1203
3210

P

3145 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876452301
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2301
3210

P

3425 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876451302
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1302
3210

P

4025 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543012
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3012
3210

P

4053 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542013
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2013
3210

P

4105 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543021
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

4135 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450321
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0321
3210

P

4150 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542031
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2031
3210

P

12 0245

4152 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450231
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0231
3210

P

91

4253 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450213
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0213
3210

P

4325 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450312
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0312
3210

P

4503 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541023
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1023
3210

P

4513 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450123
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0123
3210

P

4520 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541032
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1032
3210

P

4521 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450132
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0132
3210

P

2405 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

3450 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

4215 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543021
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

4351 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542031
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2031
3210

P

13 1045

4532 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541032
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1032
3210

P

1345 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876452310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

1405 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543102
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3102
3210

P

1450 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543102
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3102
3210

P

2045 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543201
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3201
3210

P

2415 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

2435 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876451320
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P

2450 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876451203
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1203
3210

P

14 1245

3045 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876452301
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2301
3210

P

92

3405 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876451302
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1302
3210

P

3451 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

3452 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876451230
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1230
3210

P

4015 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543012
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3012
3210

P

4051 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542013
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2013
3210

P

4205 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543021
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

4235 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450321
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0321
3210

P

4251 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450213
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0213
3210

P

4315 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450312
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0312
3210

P

4350 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542031
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2031
3210

P

4352 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450231
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0231
3210

P

4502 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541023
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1023
3210

P

4512 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450123
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0123
3210

P

4530 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541032
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1032
3210

P

4531 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876450132
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0132
3210

P

1452 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

2345 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

2451 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542013
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2013
3210

P

15 1435

3245 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543021
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

93

3415 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543012
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3012
3210

P

4035 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543201
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3201
3210

P

4052 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542301
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2301
3210

P

4250 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542103
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2103
3210

P

4305 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543102
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3102
3210

P

4501 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541302
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1302
3210

P

4510 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541203
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1203
3210

P

0341 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

0432 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541320
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P

1024 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543102
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3102
3210

P

1043 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542103
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2103
3210

P

2104 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543201
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3201
3210

P

2403 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541203
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1203
3210

P

3140 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542301
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2301
3210

P

3420 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541302
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1302
3210

P

4132 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540321
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0321
3210

P

4213 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540213
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0213
3210

P

16 0214

4321 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540312
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0312
3210

P

17 0234 0241 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

94

0314 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

0342 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

0412 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541230
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1230
3210

P

0431 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541320
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P

1243 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542103
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2103
3210

P

1324 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543102
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3102
3210

P

1403 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541023
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1023
3210

P

1420 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541032
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1032
3210

P

2043 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542013
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2013
3210

P

2134 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543201
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3201
3210

P

2140 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542031
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2031
3210

P

2413 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541203
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1203
3210

P

3024 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543012
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3012
3210

P

3104 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543021
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

3142 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542301
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2301
3210

P

3421 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541302
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1302
3210

P

4013 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540123
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0123
3210

P

4021 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540132
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0132
3210

P

4102 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540231
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0231
3210

P

95

4130 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540321
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0321
3210

P

4203 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540213
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0213
3210

P

4320 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540312
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0312
3210

P

1042 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

1432 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541032
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1032
3210

P

2304 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

2341 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542031
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2031
3210

P

2401 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541320
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P

3214 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543021
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

3240 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

3410 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541230
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1230
3210

P

4032 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540132
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0132
3210

P

4210 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540321
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0321
3210

P

18 1034

4301 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540231
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0231
3210

P

1240 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542103
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2103
3210

P

1304 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543102
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3102
3210

P

1342 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

1402 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541023
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1023
3210

P

19 1234

1430 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541032
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1032
3210

P

96

2034 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543201
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3201
3210

P

2041 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542013
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2013
3210

P

2314 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

2340 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542031
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2031
3210

P

2410 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541203
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1203
3210

P

2431 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541320
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P

3014 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543012
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3012
3210

P

3042 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542301
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2301
3210

P

3204 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543021
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

3241 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

3401 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541302
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1302
3210

P

3412 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541230
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1230
3210

P

4012 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540123
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0123
3210

P

4031 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540132
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0132
3210

P

4201 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540213
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0213
3210

P

4230 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540321
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0321
3210

P

4302 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540231
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0231
3210

P

4310 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540312
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0312
3210

P

20 1204 1340 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

97

2014 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

2430 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541320
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P

3041 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

3402 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541230
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1230
3210

P

4231 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540321
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0321
3210

P

4312 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540231
9876543210

C , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0231
3210

P

98

Appendix B. Optimal Strategy for AB Game in

the Expected Case
Prior to introducing the optimal strategy of AB game, its representation will be

illustrated first. The lower-case alphabets, a, b, c, …, m, n, represent the 14 responses

(hints), as shown in Table 15.

Table 15. The mapping between responses and representative letters

Response Representative letter Response Representative letter

[4, 0] a [1, 1] h

[3, 0] b [1, 0] i

[2, 2] c [0, 4] j

[2, 1] d [0, 3] k

[2, 0] e [0, 2] l

[1, 3] f [0, 1] m

[1, 2] g [0, 0] n

Three kinds of tokens will appear in the strategy. The first kind is four-digit

Arabic numerals, which means the query made by the codebreaker. The second one is

lower-case letters mentioned above, which indicate the responses. The last kind is

parentheses. The tokens in parentheses refer to the optimal tactic of the state. In other

words, it is an optimal game tree of that state. The tactic is constructed with a

recursive form and can be treated as a game tree. For example, suppose that a game

tree depicted in Figure 21 is given. Then its corresponding representation will be

“4872 (j 7248 (a) f 4287 (f 8274 (a) a) a)”. Furthermore, it is easy to reconstruct

the game tree from its representation with depth-first ordering.

99

j af

4872

7248 4287

8274

a

7248

a

a

f

{7248} {4287, 8274}

{8274}

4872 (j 7248 (a) f 4287 (f 8274 (a) a) a)

{4287, 4872, 7248, 8274}

4287

8274

4872

Figure 21. The transformation between the game tree and its corresponding
representation

The derived optimal strategy of AB game in the average case is shown partially

as follows due to space restrictions. In order to clarify the levels, we use an indent

structure. We have established a website (http://www.csie.ntnu.edu.tw/~linss/

ABgame/optimal_strategy.html) that includes the full text of the optimal strategy.

0123 (n 4567 (l 5689 (l 7498 (j 8974 (c 9874 (a)

 a)

 f 8794 (f 9748 (a)

 a)

 c 7894 (f 7948 (a)

 j 9478 (a)

100

 a)

 a)

 k 6948 (l 8795 (c 7895 (a)

 f 9875 (a)

 a)

 k 8495 (l 9876 (a)

 j 9854 (a)

 h 7896 (a)

 e 8796 (a)

 a)

 j 8496 (a)

 h 8975 (j 9758 (a)

 a)

 g 8954 (j 9845 (a)

 f 9458 (a)

 e 8976 (a)

 a)

 f 6894 (f 9846 (a)

 a)

 e 7958 (a)

 d 6798 (l 8945 (a)

101

 a)

 c 6498 (j 8946 (a)

 a)

 b 6978 (a)

 a)

// The full text of the optimal strategy is included at http://www.csie.ntnu.edu.tw/

~linss/ABgame/optimal_strategy.html.

102

Appendix C. Publication List
(a) Referred Papers:

 As a PhD student

[a1] Huang, L. T., and Lin, S. S. (2009), “Optimal analyses for 3×n AB games

in the worst case,” to appear in Lecture Notes in Computer Science series.

[a2] Huang, L. T., Chen, S. T., Huang, S. J., and Lin, S. S. (2007), “An

efficient approach to solve Mastermind optimally,” ICGA Journal, Vol.

30, No. 3, pp. 143–149.

[a3] Chen, S. T., Lin, S. S., and Huang, L. T. (2007), “A two-phase

optimization algorithm for Mastermind,” Computer Journal, Vol. 50, No.

4, pp. 435–443.

[a4] Chen, S. T., Lin, S. S., Huang, L. T., and Hsu, S. H. (2007), “Strategy

optimization for deductive games,” European Journal of Operational

Research, Vol. 183, No. 2, pp. 757–766.

 As a master’s student

[a5] Huang, L. T., Chen, S. T., and Lin, S. S. (2006), “Exact-bound analyses

and optimal strategies for Mastermind with a lie,” Lecture Notes in

Computer Science, Advances in Computer Games 11, Vol. 4250, pp.

195–209.

[a6] Chen, S. T., Lin, S. S., Huang, L. T., and Wei, C. J. (2004), “Towards the

Exact Minimization of BDDs — An Elitism-Based Distributed

Evolutionary Algorithm,” Journal of Heuristics: Special Issue on New

Advance on Parallel Meta-Heuristics for Complex Problems, Vol. 10, No.

3, pp. 337–355.

(b) Submitted Paper:

103

[b1] Huang, L. T., Chen, S. T., and Lin, S. S. (2009), “Optimal Algorithm for

AB Game in the Expected Case,” submitted to IEEE Transactions on

Computational Intelligence and AI in Games.

(c) Conference Papers:

 As a PhD student

[c1] Huang, L. T., and Lin, S. S. (2009), “Optimal analyses for 3×n AB games

in the worst case,” The 12th conference on Advances in Computer Games

(ACG12), Pamplona, Spain.

[c2] Huang, L. T., Chen, S. T., Huang, S. J., and Lin, S. S. (2007), “An

efficient approach to solve Mastermind optimally,” COMPUTER GAMES

WORKSHOP 2007, Amsterdam, The Netherlands.

[c3] Chen, S. T., Lin, S. S., Chang, S. W., and Huang, L. T. (2006), “A

two-phase search algorithm for the set covering problem”，第十一屆人工

智慧與應用研討會，國立高雄應用科技大學，台灣，中華民國。

 As a master’s student

[c4] Huang, L. T., Chen, S. T., and Lin, S. S. (2005), “Exact-bound analyses

and optimal strategies for Mastermind with a lie,” The 11th Advances in

Computer Games Conference (ACG11), Taipei, Taiwan.

(d) Technical Reports:

[d1] 陳善泰、黃立德、張書維、劉耀才、江漢昇、胡淑瓊，2005，國科會

研究報告：演繹競局問題最佳化策略及其應用於容錯系統之研究

(2/2)，NSC93-2213-E-003-001。

[d2] 陳善泰、黃立德、張書維、劉耀才、江漢昇、胡淑瓊，2004，國科會

研究報告：演繹競局問題最佳化策略及其應用於容錯系統之研究

(1/2)，NSC92-2213-E-003-006。

104

	Chapter 1 Introduction
	1.1 Deductive Games
	1.1.1 Discussed Categories of Deductive Games
	1.1.1.1 The Family of Mastermind
	1.1.1.2 The Family of AB game
	1.1.1.3 Deductive Games with Unreliable Responses

	1.1.2 Search Space of Discussed Deductive Games

	1.2 The Classification of Proposed Algorithms
	1.2.1 Computer-aided Proof
	1.2.2 Branch-and-bound Algorithm
	1.2.3 Approximate algorithm
	1.2.4 Theoretical pruning

	1.3 Preliminaries of Related Work
	1.4 Research History of Deductive Games
	1.5 Terminologies of Deductive Games
	1.6 Organization of the Dissertation
	Chapter 2 Depth-First Backtracking Algorithm with Branch-and-Bound Pruning
	2.1 Introduction
	2.2 The Depth-first Backtracking Algorithm with Branch-and-Bound Pruning
	2.2.1 The Framework of DBB
	2.2.2 DBB for Mastermind in the Expected Case
	2.2.2.1 DBB for Mastermind
	2.2.2.2 The Admissible Heuristic for Deductive Games

	2.3 Experimental Results
	2.4 Chapter Conclusion

	Chapter 3 Refined Branch-and-Bound Algorithm with Speed-up Techniques
	3.1 Introduction
	3.2 A Refined Branch-and-Bound Algorithm with Speed-up Techniques
	3.2.1 The Fundamental Framework in Terms of Branch-and-Bound Pruning
	3.2.2 The State-of-the-Art Techniques
	3.2.2.1 Technique 1: Incremental Updates of the Lower Bounds
	3.2.2.2 Technique 2: Earlier Terminations
	3.2.2.3 Technique 3: Reductions of Equivalent Queries

	3.3 Experimental Results and Discussions
	3.3.1 The Effects of the Three Useful Techniques
	3.3.2 Performances and Results of RBB for Solving Mastermind and AB Game

	3.4 Chapter Conclusion

	Chapter 4 Structural-reduction Approach
	4.1 Introduction
	4.2 Optimal Analyses for the Codebreaker and the Codemaker
	4.2.1 Analyses of the Optimal Queries for the Codebreaker
	4.2.2 The Devil’s Strategy for the Codemaker

	4.3 An Illustrative Example of the Pessimistic Situation
	4.4 Chapter Conclusion

	Chapter 5 Optimization Algorithm and Verification Algorithm
	5.1 Introduction
	5.2 Two-Phase Optimization Algorithm
	5.2.1 The Structure of TPOA
	5.2.2 Hash Collision Groups
	5.2.3 TPOA for AB game with an Unreliable Response
	5.2.4 The Hashing Function and the Heuristic of Evaluation
	5.2.5 Experiment Results of TPOA

	5.3 Pigeonhole-principle-based Verification Algorithm
	5.4 Chapter Conclusion

	Chapter 6 Conclusion and Future Work
	6.1 Concluding Remarks
	6.2 Future Work

