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摘要 

隨著眾多領域中最佳化問題的逐步探索，發現許多重要的問題都能被轉換成

演繹競局問題(deductive game)的模型，例如編碼理論(coding theory)、電路測試

(circuit testing)、密碼系統破解(differential cryptanalysis)、附加條件搜尋(additive 

search problem)等問題。換言之，在演繹競局問題上的研究將使其他相關領域問

題的求解露出希望曙光，因此發展有效解決演繹競局問題的方法變得不容遲緩。 

在過去數十年間，有許多針對演繹競局問題的研究產生。Mastermind 與 AB 

game(或稱為 Bulls and Cow)是最有名的兩種演繹競局問題，知名的電腦科學家

Donald E. Knuth 在 1976 年於論文中介紹此二者並針對 Mastermind 做相關研究。

在本論文中，我們提出一系列理論剪裁(theoretical-pruning)的最佳化方法與數學

證明來解決這兩種問題。 

在運用這些新方法到欲解決的問題後，我們得到下列新的成果： 

(1) 我們提出一個適用於各種演繹競局問題的 admissible heuristic。同時，我

們根據此 admissible heuristic，提出一個更有效率的演算法來解決

Mastermind，最後亦得到 Mastermind 在平均狀況下的最佳策略。 

(2) 針對 AB game，我們提出一個更精緻的剪裁演算法(pruning algorithm)來

處理它。很幸運地，最後我們得到 AB game 在平均狀況下的最佳策略且

其平均猜測次數為 5.213。 

(3) 我們針對在最差狀況下 3×n AB games 的最佳策略做理論性的分析。最

後我們成功地導出一個計算最差狀況下的最佳猜測次數之公式。 

(4) 我們研究一個 AB game 的變型，稱為容許一次錯誤回應之 AB game。

最終我們求得其最佳猜測次數為 8。 

 

關鍵字：AB game、分支界定法、演繹競局問題、競局樹、Mastermind、最佳策

略、搜尋演算法、理論剪裁、錯誤回應。 
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Abstract 

With the increasing exploration of optimization problems in numerous fields, 

many critical issues, such as coding theory, circuit testing, differential cryptanalysis, 

and additive search problem, can be modeled as deductive games. In other words, the 

research of these games has led to the hope that the fruitful solutions of problems in 

related areas may be obtained. Thus, it becomes urgent to develop efficient 

mechanisms for deductive games. 

Over the last few decades, considerable concern has arisen in solving a number of 

deductive games. Mastermind and AB game (or “Bulls and Cows”), which were 

introduced by the famous scientist, Donald E. Knuth, in 1976, are the most 

well-known ones. In this dissertation, we aim to present a series of theoretical-pruning 

optimization approaches and mathematical proofs to solve both of the two. 

As a result of applying these novel methods, the following new results have been 
obtained. 

(1) An admissible heuristic for deductive games is presented. Meanwhile, a 

more efficient algorithm based on it is introduced to solve Mastermind and 

an alternative optimal strategy in the expected case is gained eventually. 

(2) A refined pruning algorithm is demonstrated to address AB game. 

Fortunately, an optimal strategy for AB game in the expected case is 

acquired finally and its expected number of queries is 5.213. 

(3) Analyses of playing 3×n AB games in the worst case optimally are 

conducted. Furthermore, a worthwhile formula for calculating the optimal 

numbers of queries in the worst case is derived successfully. 

(4) A variation of AB game, AB game with an unreliable response, is surveyed. 

Finally, an exact bound of the number of queries for the game is achieved 

and its value is 8. 

 



 

Keywords: AB game, branch-and-bound, deductive game, game tree, Mastermind, 

optimal strategy, search algorithm, theoretical pruning, unreliable response. 
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Chapter 1                     

Introduction 

1.1 Deductive Games 

Deductive games are zero-sum games of imperfect information. Two opponents 

are involved in deductive games. One opponent serves as a codemaker, who thinks of 

a secret code in mind, and the other is a codebreaker, who has to acquire the code by 

making queries iteratively. Each query is a guess for a possible secret code. After a 

query is made in each ply, the codemaker will give a response. The goal of the 

codebreaker is to identify the code in the fewest queries in accordance with previous 

information. The game proceeds in turn until the secret code is eventually obtained by 

the codebreaker. The original versions of deductive games, Mastermind and AB game 

(or “Bulls and Cows”), were first introduced by the famous scientist, Donald E. Knuth, 

in 1976 [45]. Detailed descriptions and categories of deductive games will be 

introduced in the follow-up paragraphs. 

1.1.1 Discussed Categories of Deductive Games 

Generally speaking, an m×n deductive game means that each possible secret code 

in the game is composed of m digits while every digit has n possibilities (symbols). 

Without loss of generality, the set of these n symbols is defined as S = {0, 1, 2, ..., n − 

1}. Suppose that the codemaker has a secret code mcccc K21=  in mind and the 
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codebreaker makes a query mgggg K21= , where jiSgc ji ,,, ∀∈ . Then, the 

codemaker will give a response [x, y], where x and y are defined as follows. 

 { } migcix ii ,,1,: K=∀== . Thus, x means the number of symbols which 

appear in both c and g and meanwhile, every symbol occupies the same 

position in both c and g. 

 , where ( )∑ =
−=

n

j jj xqpy
0

,min { }jcip ij == :  and { }jgiq ij == : . In 

other words, y represents the number of symbols which occur in both c and g 

but the positions of these symbols in c and g do not match. 

Note that for convenience, [x, y] is called xAyB as well. In this notation, the 

corresponding part can be omitted if x or y equal to 0. For instance, we can say 1A1B 

instead of [1, 1] while [0, 1] is also called 0A1B or 1B simply. A deductive game has 

ended if the codebreaker figures out the secret code, i.e., a response [m, 0] is received 

by the codebreaker. Besides the above definitions, there is one additional 

characteristic to distinguish two families of deductive games. That is whether repeated 

symbols are allowed in each secret code or not. One of the two is the family of 

Mastermind, in which repeated symbols are permitted in a secret code. The other is 

the family of AB game, in which all symbols within a code are distinct. The following 

subsection will offer additional introductions to the two families of deductive games 

and one of their variants. 

1.1.1.1 The Family of Mastermind 

In this kind of deductive games, a symbol may appear several times within a 

secret code. The most popular version of Mastermind is 4×6 Mastermind, which is 

well-known around the world since its appearance in 1972. A secret code in it consists 

of 4 digits with 6 possible symbols, e.g., 0, 1, …, 5. This is a topic that will be first 
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investigated in the study. In order to simplify its name, 4×6 Mastermind is simply 

called Mastermind in the later discussion if we do not stress its dimension. Figure 1 

shows the screenshot of 4×6 Mastermind, which was captured from [23]. 

 

Figure 1. The screenshot of 4×6 Mastermind 

1.1.1.2 The Family of AB game 

The kind of deductive games is an ancient game that may date back a century or 

more and Mastermind also resembles it. The family of AB game is innately the same 

as that of Mastermind except the distinct symbols in a code. 4×10 AB game is the 

most common version and widespread in Asia and England. A secret code in it is 

composed of 4 digits while there are 10 possible symbols, i.e. 0, 1, …, 9, in each digit. 

In this study, we focus on 4×10 AB game and a generalized version, 3×n AB games, 

and for the sake of simplicity, AB game is usually referred to as 4×10 AB game if the 

dimension is not mentioned. Figure 2 exhibits the screenshot of 4×10 AB game, 

which was captured from [57]. 
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Figure 2. The screenshot of 4×10 AB game 

1.1.1.3 Deductive Games with Unreliable Responses 

In normal deductive games, the codemaker will always give a correct response 

when the codebreaker makes a query. In order to fit in with the area of fault tolerance, 

a variant model of deductive games, called deductive games with unreliable responses, 

was first demonstrated by Huang et al. [38]. In other words, it is the same as the 

original one but the codemaker is allowed to offer incorrect responses at most e times, 

where the value of e is greater than zero. In [38], 4×6 Mastermind with an unreliable 

response has been solved completely. In this dissertation, a harder problem, 4×10 AB 

game with an unreliable response, will be considered and likewise, every code in it 

has 4 digits with 10 possible symbols. We call it AB game with an unreliable response 

for short as well. 

1.1.2 Search Space of Discussed Deductive Games 

Before the addressed deductive games are discussed, solid analyses of search 
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space for these problems are necessary. Assume that an m×n deductive game is taken 

into account. The numbers of all valid responses given by the codemaker and all 

possible queries the codebreaker can make are offered here. 

 Note that there exists ( ) ( )( ) 2211321 ++=+++++ mmmL  combinations 

of the values of x and y for m digits but the response [m − 1, 1] is impossible. 

Therefore, there are at most 
( )( ) ( )

2
31

2
21 +

=−
++ mmmm

 legal responses. In 

other words, the codebreaker may receive one of these responses which are 

[m, 0], [m − 1, 0], [m − 2, 2], [m − 2, 1], [m − 2, 0], ..., [m − i, i], ..., [m − i, 

0], ..., [0, m], ..., [0, 0]. 

 All possible guesses the codebreaker can query are same as all valid secret 

codes the codemaker can choose. Obviously, there are  secret codes in 

the family of Mastermind and 

mn

( )!! mnn −  codes in the family of AB game. 

Thus, so are their numbers of all possible queries. 

Table 1 summarizes the search space of every deductive games discussed in this 

study with the use of above formulas. Note that the number of pessimistic queries for 

these games means the worst-case number of queries required for the codebreaker. In 

the column “# of pessimistic queries”, each value from top to down is referenced from 

[45], [18], Chapter 4, and Chapter 5 of this study respectively. 

Table 1. The search space of discussed deductive games 

deductive games # of valid secret codes 
# of legal 
responses

Pessimistic # of 
queries 

Search space 

4×6 Mastermind 129664 =  14 5 (1296×14)5 ≈ 1021 

4×10 AB game ( ) 5040!410!10 =−  14 7 (5040×14)7 ≈ 1034 

3×n AB game ( ) nnnnn 23!3! 23 +−=− 9 ( )⎣ ⎦ 331 ++n ( ) ( )⎣ ⎦ 33123 18279
++

+−
n

nnn

4×10 AB game with 
an unreliable response 

( ) 5040!410!10 =−  14 8 (5040×14)8 ≈ 1039 
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1.2 The Classification of Proposed Algorithms 

In order to investigate the above games, several kinds of algorithms have been 

proposed. We therefore give a comprehensive introduction to their classification and 

major properties. 

1.2.1 Computer-aided Proof 

A computer-aided proof (or called computer-assisted proof, computational 

method) is a paradigm of proofs, which has been partially or fully generated by 

computer. Most computer-aided proofs are implemented with numerous case-by-case 

exhaustion for desired problems. Sometimes, some theorems seem concise in nature 

whereas their mathematical proofs rely on heavy analyses of different configurations 

[69]. Thus, the computing power of computers is necessary to do an exhaustive 

verification. 

In fact, not only the use of computers can make the analyses of complicated 

algorithms fun but also the results may not be gained in a reasonable time without the 

assistance of computers [65][66]. Historically, there were many significant results 

proven by this approach such as the four-color theorem [4][5], the Kepler conjecture 

[32], Connect-Four [1][2], Connect-Five [3], checkers [63] and so on. 

1.2.2 Branch-and-bound Algorithm 

The branch-and-bound algorithm was first demonstrated by Land and Doig in 

1960 [49] and its appearance is common in the modern textbooks as well [52]. 

Another similar algorithm is named as A* search [62] and previous study reveals that 

the two types of algorithms are essentially identical and they only differ at the 

interpretation level [48]. Thus, the two terms will be alternatively used below 

according to the concept we intend to express. 
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In general, the branch-and-bound algorithm is a general search algorithm for 

finding optimal solutions of various optimization problems. The key idea is that if a 

branch is encountered in the search process, the algorithm decides whether the branch 

should be cut or not in accordance with the value of the admissible heuristic (or called 

bound function), which represents a lower bound to the goal. 

Good admissible heuristics of a certain problem are usually hard to discover, but 

are just the core of a branch-and-bound algorithm. Hence, they play significant roles 

in this kind of methods. On the other hand, admissible heuristics are worth 

discovering because they also have desirable properties in various search algorithms 

[56]. 

1.2.3 Approximate algorithm 

Approximate algorithms are developed to solve optimization problems in practice. 

They sacrifice the guarantee of finding optimal solutions for the sake of getting 

feasible solutions in a significantly reduced amount of time. Approximate methods are 

usually distinguished between constructive methods and local search methods. The 

former ones generate solutions from scratch by adding components (or called moves) 

until a solution is complete. On the other hand, the latter ones start from some initial 

solution and iteratively try to replace the current solution by a better one. However, 

both methods may easily be trapped into local optima. 

To escape from local optima, a new kind of approximate algorithms has emerged 

in the past three decades. These algorithms try to combine basic heuristic methods in 

higher-level framework aimed at efficiently and effectively exploring a search space. 

Examples of these algorithms based on local search methods are genetic algorithms 

[36], simulated annealing [44], tabu search [26][27], ant colony optimization [22], and 

iterated greedy [60]. On the other hand, examples of algorithms based on constructive 
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methods are iterative sampling [33], HBSS [13], sampling and clustering [19], 

selective-sampling simulation [10], adaptive sampling [41][61], GRASP [24][55], 

block search [35], and Monte-Carlo Tree Search [20]. The main difference between 

these algorithms is the mechanisms used to guide the tree search. 

1.2.4 Theoretical pruning 

Given a huge search space of a problem, the forward pruning is a common 

scheme if a search algorithm is adopted to handle this problem. It is able to prune 

some useless branches in the search to speed up the work. Recently, some new 

forward-pruning mechanisms are presented such as null move [21], multi-cut [11], 

and AEL pruning [34]. Although these new approaches can acquire better results in 

less computation time, they still fail to guarantee the optimal outcomes. Therefore, the 

mechanism of the theoretical pruning, whose key idea is to conduct a forward pruning 

based on optimal analyses, is suggested in the research. Since this kind of pruning 

certified by optimal analyses omits the expansion of some branches, it can not only 

accelerate the speed of searching but also ensure the acquisition of best results. 

Table 2 lists the classification of all algorithms appearing in the study and each 

algorithm is marked with the corresponding classification. The column “Position” 

shows in which chapter each algorithm is presented. 

Table 2. The classification of proposed algorithms 

Algorithms 
Computer-aided 

proof 
Branch and bound

Mathematical 
proof 

Approximate 
Theoretical 

pruning 
Position 

DBB √ √   √ Chapter 2

RBB √ √   √ Chapter 3

SR   √   Chapter 4

TPOA    √  Chapter 5

PPV √ √   √ Chapter 5
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1.3 Preliminaries of Related Work 

Mastermind and AB game, whose dimensions are 4×6 and 4×10 respectively, are 

widely known throughout the world. The former is popular in America while the later, 

which is called “Bulls and Cows” in some places as well, is widespread in England 

and Asia. AB game is an ancient game and Mastermind, which resembles AB game, 

was invented in 1970. They were first stressed by the notable scientist, Knuth [45]. A 

strategy of Mastermind for minimizing the number of queries was also proposed by 

him and has achieved the optimal result in the worst case, where the maximum 

number of queries needed is 5. Meanwhile, its number of queries in the expected case 

is 4.478. Plenty of studies on finding better strategies of Mastermind in the expected 

case arose from then on. Irving [39], Norvig [54], and Neuwirth [53] enhanced the 

results, in which the bounds of expected numbers of queries are 4.369, 4.47, and 

4.364, respectively. Flood [25], Ko and Teng [46] thus defined general notations for 

m×n deductive games and proposed some improved strategies. Eventually, Koyama 

and Lai [47] introduced an optimal strategy in the expected case for it in 1993 while 

the expected number of queries is about 4.34. Rosu [59] also proposed a faster 

algorithm and obtained the optimal strategy as well. A thorough introduction to 

Mastermind and a new heuristic approach were demonstrated by Barteld [6]. 

Chen et al. [16] demonstrated 2×n Mastermind and solved it completely with the 

graph-partition approach and Goddard [28] also obtained the same results for this 

problem independently. On the other hand, there is another variation called static 

Mastermind, where the codebreaker has to make all queries at once and has to 

uniquely decide the secret code after receiving all answers. Greenwell [31] derived 

some results of the game for small cases and provided some upper bounds of the 

game in a few cases. Afterwards, Goddard [29] completely solve static mastermind 
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for at most 3 digits, and for some cases of 4 digits. Huang et al. [38] also presented a 

variation, called Mastermind with an unreliable response, and obtained an optimal 

strategy for it. In 2006 the Mastermind Satisfiability Problem has been shown to be 

NP-complete [70]. Jäger and Peczarski [40] investigated the generalized Mastermind 

and used the computer aided methods and mathematical proofs to decide the optimal 

number of queries in the worst case for 3×n Mastermind and to derive the lower and 

upper bounds of the numbers of queries for 4×n Mastermind, m×2 Mastermind, and 

m×n Mastermind. Goodrich [30] studied the algorithmic complexity of Mastermind 

with single-dimensional responses, which means that there is only one number (the 

value of x) in each response. 

Much more efficient meta-heuristic algorithms, which produced comparable 

results with less running time in various dimensions of Mastermind, were investigated 

by Bernier et al. [9], Bento et al. [7], Kalisker and Camens [43], Singley [68], 

Ugurdag et al. [73], and Berghman et al. [8]. Although these methods are often 

efficient and effective, they are not able to attain the optimal strategy of Mastermind. 

Chen et al. [17] described a systematic method to address 4×6 Mastermind and it can 

achieve a near-optimal result in the expected case. 

There are some scientists that emphasized the efficiency of acquiring the good 

results, such as Shapiro [67], Swaszek [71], Rosu [59], Temporel and Kovacs [72]. 

However, the qualities of strategies they discovered may usually be incomparable 

with those of other carefully considered approaches due to quick selections of queries. 

Compared to 4×6 Mastermind, there is less research on 4×10 AB game because 

of its huge search space although 4×10 AB game has longer history. Chen et al. [15] 

introduced 2×n AB game, and found the optimal number of queries in both the worst 

and the expected cases. Moreover, Chen et al. [18] first proved the exact number of 

queries in the worst case to identify a secret code for 4×10 AB game and showed that 
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the number is 7. 

Merelo et al. [51] indicated that many critical issues, such as coding theory, 

circuit testing, differential cryptanalysis, and additive search problem, can be modeled 

as deductive games. In other words, the research of these games has led to the hope 

that the fruitful solutions of problems in related areas may be obtained. 

1.4 Research History of Deductive Games 

Table 3 has concluded with a series of significant progressive and conclusive results 

of deductive games since Knuth [45] stressed two famous deductive games, 

Mastermind and AB game, in 1976. Progressive results mean that the research of the 

handled problem has acquired better results but it may be refined again in the future. 

Conclusive results represent that a complete conclusion (often refers to as an optimal 

strategy) is obtained via the stressed problem. 

The field “Problem” is the game that paper dealt with. If it writes “Several 

dimensions of Mastermind”, then there are several versions of Mastermind surveyed 

in that paper. We can observe that many variations of deductive games are included as 

well. Moreover, the field “Case” indicates which condition the addressed problem is 

considered. The terms, “Worst” and “Expected”, mean that the problem is taken into 

account in the worst case and in the expected case. Note that “NP-C” is filled in the 

field if the game was proven to be an NP-Complete problem in that study while 

“Fixed” is used in static Mastermind and indicates a fixed number of queries is 

required. The field “Author” shows the scholars who conducted this research. 

Because of space restrictions, we omit each citation of the corresponding paper in 

Table 3, readers can reference the previous subsection for more information. 

Furthermore, it deserves to be mentioned that our contributions to the area of 

deductive games are also highlighted with gray backgrounds in Table 3. 
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Table 3. Significant research of deductive games 

Conclusive results Progressive results 
Year 

Problem Case Author Problem Case Author 
1976 4×6 Mastermind Worst Knuth [45]    

1978    4×6 Mastermind Expected Irving [39]

1982    4×6 Mastermind Expected Neuwirth [53]

1983    4×4, 4×5 Mastermind Expected Shapiro [67]

1984    4×6 Mastermind Expected Norvig [54]

1986    Several dimensions of Mastermind Expected Ko and Teng [46]

1988    Several dimensions of Mastermind Expected Flood [25]

1993 4×6 Mastermind Expected Koyama and Lai [47]    

1996    Several dimensions of Mastermind Expected Bernier et al. [9]

Several dimensions of Mastermind Expected Bento et al. [7]
1999 4×6 Mastermind Expected Rosu [59]

4×6 Mastermind Expected Swaszek [71]

2000    4×6 static Mastermind Fixed Greenwell [31]

4×n static Mastermind Fixed Goddard [29]

Several dimensions of Mastermind Expected 
Temporel and Kovacs

[72]2003 3×n static Mastermind Fixed Goddard [29]

Several dimensions of Mastermind Expected 
Kalisker and Camens

[43]

2×n AB game 
Worst, 

expected 
Chen et al. [15]

2004 

2×n Mastermind 
Worst, 

expected 

Chen et al. [16], 

Goddard [28]

   

4×6 Mastermind Expected Barteld [6]
2005    

Several dimensions of Mastermind Expected Singley [68]

Mastermind 

Satisfiability Problem 
NP-C 

Stuckman and Zhang

[70]
Several dimensions of Mastermind Expected Ugurdag [73]

2006 
4×6 Mastermind with 

an unreliable response 
Worst Huang et al. [38] 4×6, 5×8 Mastermind Expected Merelo et al. [51]

4×10 AB game Worst Chen et al. [18]
2007 

4×6 Mastermind Expected Huang et al. 
4×6 Mastermind Expected Chen et al. [17]

3×n Mastermind Worst 
Jäger and Peczarski 

[40]
4×n, m×2, and m×n Mastermind Worst 

Jäger and Peczarski 

[40]

Mastermind with 

black-peg results 
NP-C Goodrich [30] Several dimensions of Mastermind Expected Berghman et al. [8]

4×10 AB game Expected Huang et al. 

3×n AB game Worst Huang and Lin 

2009 

4×10 AB game with 

an unreliable response 
Worst Huang and Lin 
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1.5 Terminologies of Deductive Games 

There are two issues for optimizing deductive-game problems. One is to 

minimize the queries made by the codebreaker in the worst case, and the other is to 

minimize that in the expected case. An optimal strategy in the worst case is a strategy 

which minimizes the maximum number of queries needed by the codebreaker for any 

secret code chosen by the codemaker. An optimal strategy in the expected case is a 

strategy which minimizes the expected number of queries required with 

considerations of all possible codes. Note that a uniform distribution over all the 

codes the codemaker may choose is assumed. 

An alternative aspect of viewing the optimization for strategies of deductive 

games as a game-tree search is adopted in this study. In order to formulate the 

problem precisely, some general definitions used in the entire study are listed as 

follows while other specific terms are defined in each chapter individually, if 

necessary. 

Definition 1. A secret code is eligible if it is compatible with all queries and the 

corresponding responses given so far. 

Definition 2. A set, which contains some eligible codes, is referred to as a state. 

Definition 3. For an m×n deductive game, a state with only one eligible code, which 

has also been queried by the codebreaker now, is defined as a final 

state. That is to say that the secret code has been identified and the 

game is over. 

Definition 4. If finding an optimal strategy for a deductive game is regarded as a 

game-tree search, then each internal node of the game tree indicates a 

state while every leaf represents a final state. 
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Definition 5. The external path length (or called EPL for short) is the sum of the 

depth of all leaves of the game tree. 

Definition 6. The number of queries needed by the codebreaker in the expected case 

(also called the expected number of queries) is L/k, where L is the 

external path length of the game tree formed by the codebreaker’s 

strategy and k is the number of all possible codes in the game. 

Definition 7. A strategy discussed in the study refers to one of the options that the 

codebreaker can choose. Each strategy has its corresponding game tree. 

Trivially, the codebreaker has a lot of possible strategies. 

Definition 8. An optimal strategy in the expected case is the strategy which has the 

minimum expected number of queries. In other words, the external 

path length of the game tree should be minimized. 

Definition 9. An optimal strategy in the worst case is the strategy which has the 

minimum pessimistic number of queries. Hence, the height of the game 

tree should be minimized. 

Definition 10. An equivalence transformation is defined as a composition of a 

permutation on the set of symbols and a permutation on the set of 

digits. Thus, a query g1 is said to be equivalent to another query g2 if 

there exists an equivalence transformation t such that . This 

concept is presented by Neuwirth 

( )12 gtg =

[53]. 

Definition 11. Suppose the codebreaker has made i-1 queries, named as g1, g2, …, gi-1, 

then two codes u1 and u2 at the i-th query are called strategy equivalent 

if ( )11212121 ,,...,,,,...,, ugggtuggg ii −− = . In other words, we can 
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only take u1 as a representative for computing an optimal strategy if u1, 

u2, …, and uj are strategy equivalent. 
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201 2013A
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Figure 3. A strategy for 3×4 AB game 
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Figure 3, which is used for illustrating the above terminologies, is a codebreaker’s 

strategy for 3×4 AB game. In the game, the codemaker comes up with a secret code 

consisting of 3 digits out of 4 symbols, i.e., 0, 1, 2, and 3. A response, which is one of 

[3, 0], [2, 0], [1, 2], [1, 1], [0, 3], and [0, 2], is received by the codebreaker in each ply. 

Consequently, the codebreaker entails investigating the code with making use of those 

responses. Each circle appearing in Figure 3 represents a state and the number in it is 

a query made by the codebreaker at that moment while this state is encountered. 

Every double-lined square means a leaf of the game tree or a final state. The text 

above each arrow means the response offered by the codemaker. Note that the same 

notations will be adopted in the following discussions. 

Some phenomena are able to be verified easily from Figure 3. First, there are 

totally 24 possible secret codes as the game starts and thus, these 24 codes are eligible 

at that moment. Meanwhile, the set yielded by the 24 codes is the state at the 

beginning. It is also obvious that the 24 leaves in the tree imply final states. Moreover, 

Figure 3 exhibits that the external path length is 1×1 + 2×5 + 3×9 + 4×9 = 74 and the 

expected number of queries required by the codebreaker is equal to 74/24 ≈ 3.083 as 

well. Meanwhile, the pessimistic number of queries is 4 since the height of the game 

tree is 4. 

1.6 Organization of the Dissertation 

This research proposes a series of theoretical-pruning optimization algorithms 

and mathematical proofs for deductive games and therefore, the following studies are 

composed of five major parts. In Chapter 2, a complete search algorithm, depth-first 

backtracking algorithm with branch-and-bound pruning, is introduced to address 

Mastermind. Meanwhile, an admissible heuristic, which can be applied to various 

deductive games, is presented as well. Chapter 3 demonstrates a refined 
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branch-and-bound algorithm with speed-up techniques for AB game in the expected 

case. Three useful techniques for accelerating the speed of the search algorithm are 

brought up. In Chapter 4, 3×n AB games is investigated and a sophisticated method, 

called structural reduction, is developed to explain the worst situation in this game. 

Chapter 5 presents a variation of AB game, AB game with an unreliable response. An 

important theorem for deductive games is proven and two algorithms based on it, 

which are two-phase optimization algorithm with theoretical pruning and 

pigeonhole-principle-based verification algorithm with theoretical pruning, are 

proposed. Fortunately, an exact bound of the number of queries needed for the 

problem is achieved because the upper and lower bounds resulting from the two 

methods are equal. Chapter 6 concludes with remarkable results in our study and 

some future work. Moreover, two appendixes, which contain the detailed information 

on some proofs, are attached at the end of the dissertation. 
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Chapter 2                       

Depth-First Backtracking Algorithm 

with Branch-and-Bound Pruning 

An optimal strategy in the expected case for Mastermind has already been 

proposed by Koyama and Lai [47] in 1993 by using an exhaustive search but that 

study took too much time to search the strategy. Therefore, a more efficient algorithm, 

called depth-first backtracking algorithm with branch-and-bound pruning or 

abbreviated to DBB, is developed for solving Mastermind in this chapter. Compared 

to other heuristic methods, DBB can guarantee to yield the optimal tactic if the search 

procedure finishes. Moreover, an admissible heuristic, which can be applied to 

various deductive games, is presented as well. Section 2.1 gives an intuitive concept 

of our proposed approach. Section 2.2 introduces our depth-first backtracking 

algorithm with branch-and-bound pruning for Mastermind. In Section 2.3, some 

experimental results are discussed. Section 2.4 summarizes our concluding remarks in 

the chapter and a critical issue is mentioned for future research. 

2.1 Introduction 

Mastermind, whose dimension is 4×6, is a two-player game and both of two 
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players involved are the codemaker and the codebreaker. Suppose that the set of the 

six symbols, which may appear in secret codes, is S = {0, 1, 2, 3, 4, 5}. Thus, there 

are 64 = 1296 valid secret codes in Mastermind. Meanwhile, there are also 14 legal 

responses, which are [4, 0], [3, 0], [2, 2], [2, 1], [2, 0], [1, 3], [1, 2], [1, 1], [1, 0], [0, 

4], [0, 3], [0, 2], [0, 1], and [0, 0]. The other definitions and properties are described in 

Chapter 1 and so, they are omitted here. 

A complete algorithm with a novel pruning technique, named as a depth-first 

backtracking algorithm with branch-and-bound pruning (DBB), is proposed to solve 

the problem. The idea of our scheme is similar to the admissible heuristic in the A* 

search. The A* search is a tree search algorithm which finds a best path from a given 

initial state to a given goal with the lowest cost. The algorithm will terminate if a best 

solution is found. However, a complete search is conceptually required for our 

problem. Hence, DBB will search the full game tree and prune the unnecessary 

queries by using an admissible heuristic. The following sections will demonstrate the 

sophisticated algorithm and its power of searching. 

2.2 The Depth-first Backtracking Algorithm with 

Branch-and-Bound Pruning 

A large number of real-world problems can be modeled as optimization problems 

or games. A search algorithm is therefore a general approach for them. Unfortunately, 

most of these problems are NP-hard or PSPACE. In other words, it has to take 

exponential time to search for an optimal solution. Thus, there are plenty of pruning 

techniques published in the literature such as A* search [62], branch-and-bound 

pruning [52], and so on. 

Previous pruning approaches are appropriate for optimization problems since 
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their goal is to find a best solution in the search space. So, the search ends when it is 

found. A complete search is theoretically required to our problem because of the 

considerations of the optimal strategy in the expected case. Hence, traditional pruning 

approaches may not easily be applied to our problem directly. 

A novel pruning technique based on the admissible heuristic in the A* search is 

proposed to solve the problem. In Section 2.2.1, the framework of our depth-first 

backtracking algorithm with branch-and-bound pruning (DBB) is introduced. Section 

2.2.2 illustrates the detailed operations of our scheme. 

2.2.1 The Framework of DBB 

The idea of our scheme is similar to the admissible heuristic in the A* search. The 

A* search is a tree (graph) search algorithm which finds a best path from a given 

initial state to a given goal with the lowest cost. The algorithm will terminate if a best 

solution is found. However, a complete search is conceptually required for our 

problem. Hence, DBB will search the full game tree and prune the unnecessary 

queries by using an admissible heuristic. Notice that a solution described here means a 

strategy for the codebreaker to identify a secret code with respect to our problem. 

final state

. . .

. . .

. . .

current state

final state

s = actual cost

h'

h*: the theoretical lower bound

estimated cost = h' + h*

q1 q2

 

Figure 4. The scenario of branch-and-bound pruning 
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Figure 4 shows a scenario of DBB. Suppose that h’ is the cost from the root to the 

current state and h* is the cost from the current state to the final state. Then, h* is 

called admissible if it never overestimates the cost to reach the final state. In other 

words, the actual cost is less than or equal to h’ + h*. It can also be viewed as a 

theoretical lower bound for the problem we deal with. 

Our scheme traverses the game tree in depth-first fashion until a final state is 

reached. It then gets an actual cost s which is initially assigned to be the current-best 

solution. Note that the actual cost s results from the query q1 in its traversed path. 

Afterwards, it soon backtracks to its parent, e.g., the current state, and picks one of 

the other queries, e.g., the query q2, and uses an admissible heuristic to estimate the 

cost h* of q2. The search continues if s is larger than h’ + h*. Otherwise, a cut happens 

because s is less than or equal to h’ + h*. In other words, there is no need to expand 

the branch of q2 and the correctness of the algorithm is still maintained. This 

continues in a similar manner until the full game tree is searched. 

DBB (state v)

01   if (a final state is reached) then return the current-best solution s; // Final state indicates the leaf of the game
   tree.

02   Expand v;

03   for  (each branch  q  of  v) // Each q is a branch of v.

04           h* = ESTIMATE( q); // ESTIMATE is an admissible heuristic of
   predicting the cost from q to a final state.

05           if (h' + h* < s) then // h' is the actual cost from the start state to v.

06                   DBB (the states resulting from q); // Search recursively from the states
   resulting from q.

07           else

08                   Cut the branch q; // A cut happens if h' + h* ≥ s.
 

Figure 5. The depth-first backtracking algorithm with branch-and-bound pruning 

A rough sketch of the entire algorithm is exhibited in Figure 5. It is especially 

important to notice that DBB always maintains a current-best solution s during the 

search. Hence, DBB goes through the downward direction at first until a final state is 

reached. It therefore gets a current-best solution (s is updated). Then, DBB backtracks 
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and starts to estimate h* in each of the other queries. Unnecessary branches of the 

queries will never be expanded. Note that it updates s constantly when final states are 

encountered. So, DBB will finally obtain an optimal solution when the full game tree 

has been traversed completely. 

2.2.2 DBB for Mastermind in the Expected Case 

In this section, we will deal with Mastermind in the expected case. First, the 

pruning technique applied to Mastermind is introduced in Section 2.2.2.1. Second, the 

admissible heuristic we used is designed and explained carefully in the follow-up 

section. Eventually, an optimal strategy is found as a result of applying DBB to this 

problem. 

2.2.2.1 DBB for Mastermind 

According to the analyses in Table 1, the search space for Mastermind is 

(1296×14)5 ≈ 1021. Therefore, it takes much time to find an optimal strategy by 

searching the game tree completely. A pruning technique adopted by DBB is used to 

save a lot of time instead of making an exhaustive search. Figure 6 shows the game 

tree of Mastermind by applying DBB. The circles in the Figure 6 mean the states 

which are the sets of eligible secret codes while the diamonds are the possible queries 

the codebreaker can choose (1296 valid queries in each ply). In the game tree, the 14 

branches produced by the codemaker’s responses should be traversed completely and 

the 1296 branches expanded by the codebreaker may be pruned by the admissible 

heuristic since we are aiming at finding an optimal strategy for the codebreaker. Let’s 

consider the situation exhibited in Figure 6. The traversal to the subtrees of q1 (in bold 

style) is just finished and q2 is now taken into account. An estimated value h* is 

obtained with the use of the admissible function. The subtrees below q2 do not have to 

be expanded if the result of expanding q1 is better than h*. This is the key idea of DBB 
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and the search can thus be completed in a more reasonable time. Note that the 

correctness of DBB is preserved because of the admissible heuristic. 

 

Figure 6. The game tree of Mastermind by applying DBB 

2.2.2.2 The Admissible Heuristic for Deductive Games 

Now the most critical issue is how to design an admissible heuristic function to 

estimate the theoretical lower bound h*. Note that minimizing the number of queries 

in the expected case is the same as minimizing the external path length of the game 

tree. So, the concept of volumes introduced by Huang et al. [38] is involved to get the 

theoretical maximum bounds for the 14 classes (responses). In order to make sense, 

the term, “response”, is replaced by “class” here. We know that different queries in a 

certain ply result in distinct distributions of the eligible codes in 14 classes. The 

distribution discussed here is the sizes of 14 classes resulting from a certain query. 

Thus, the volume of a class [x, y] is defined as the maximum value of the numbers of 

the eligible codes when the codebreaker makes all the valid queries in one ply and the 

codemaker responses with [x, y]. In the beginning, at the root of Figure 6, there is a 
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total of 1296 secret codes. While the first query is considered, there are 5 

nonequivalent queries in 1296 possible codes, i.e., “0000”, “0001”, “0011”, “0012”, 

and “0123” for the codebreaker [47]. If the codebreaker queries “0000” and the 

codemaker gives the response [1, 0], then we can derive that there are 500 possible 

secret codes. Similarly, if the codebreaker queries “0001”, “0011”, “0012”, or “0123”, 

and the codemaker gives the response [1, 0], then we can derive that there are 317, 

256, 182, and 108 possible secret codes, respectively. So, the volume of the class [1, 0] 

is set to be 500, the maximum value of these numbers: 500, 317, 256, 182, and 108. 

With the use of Get_volume function (see Huang et al. [38]) based on the above idea, 

the volumes of the 14 classes (responses) are obtained as in Table 4. 

Table 4. The volumes of 14 classes calculated by Get_volume function 

class [4, 0] [2, 2] [1, 3] [0, 4] [3, 0] [2, 1] [1, 2] [0, 3] [2, 0] [1, 1] [0, 1] [0, 2] [1, 0] [0, 0] 

volume 1 6 8 9 20 48 132 136 150 252 308 312 500 625 

 

The same principle of the extended pigeonhole principle presented by Chen et al. 

[18] is therefore employed to estimate the lower bounds of the queries needed. 

However, there are major differences between the problem in the previous study 

(Chen et al. [18]) and this problem we consider now. Only the worst case among the 

14 classes is considered for the codemaker in that paper. The so-called “worst case” 

denotes the response (class) which will result in the maximum number of queries 

required by the codebreaker. But each class should be taken into account for our 

problem.  

The heuristic function here has to calculate the “theoretical optimal” number of 

queries in the expected case for a certain query (or called the lower bound of a certain 

query) for the codebreaker. Suppose that the lower bound of a query q is assessed by 

the codebreaker. The query q results in 14 classes. It will assume that there exists an 
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optimal strategy such that all of the eligible codes in each class may be divided evenly 

in the following queries. The rated value calculated by this heuristic for a state (one of 

the 14 classes) is the external path length (EPL) of the subtree that is yielded by the 

theoretical optimal strategy we imagine. So, the actual expected number of queries is 

thus larger than or equal to the estimated value. Trivially, the heuristic is admissible 

because a theoretical optimal strategy is assumed to rate the EPL of the subtree of 

each class formed by q. Moreover, it can be applied to any deductive games by 

adjusting the number of legal classes (the number of legal responses the codemaker 

can give) and its volume of each legal class since any other specific knowledge do not 

have to be considered. In other words, the lower bound of a query q by utilizing this 

heuristic is equal to the summation of each EPL with respect to 14 classes plus the 

size of the state, which is the original state before q is made. 

 

Figure 7. An example of the calculation of the admissible heuristic for Mastermind 

A simple example to illustrate the calculation of the EPL regarding some class 

(state) yielded by q is shown in Figure 7 with the use of the proposed admissible 

heuristic. Given a state with a size of 17, as shown in Figure 5, we imagine that the 

theoretical optimal strategy will divide the 17 eligible codes into 14 classes evenly 

without exceeding the corresponding volumes. The number in the lower half of the 
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circle is the volume of each class and the number in the upper half is the number of 

eligible codes in it. Since there is 1 leaf at level 1, 13 leaves at level 2, and 3 leaves at 

level 3, it is obvious that the external path length of the tree is 1×1 + 2×13 + 3×3 = 36 

in the ideal situation. Thus, the external path length of the example must be smaller 

than or equal to the actual expected number of queries. It is therefore easy to see that 

the heuristic is admissible because it never overestimates the expected number of 

queries. 

2.3 Experimental Results 

In order to analyze the performance of the proposed DBB, we demonstrate the 

results of the original version of Mastermind (4×6 Mastermind) and another version 

of Mastermind, which is 3×5 Mastermind. 3×5 Mastermind has smaller search space 

in the case of 3 digits with 5 possible symbols. That is to say that it has 53 = 125 

possible secret codes totally. Note that the equivalent properties proposed by 

Neuwirth [53] are able to reduce the search space. For example, “0000” is equivalent 

to “1111” at the first query because the numbers, 1 and 2, are both not used before. 

With the considerations of the properties, there are five nonequivalent queries at the 

first query, which are “0000”, “0001”, “0011”, “0012”, and “0123”. The branching 

factor in the first ply changes from 14×1296 to 14×5 eventually. This technique has 

also been implemented in our programs in order to speed up the search. 

Besides the comparison between 3×5 Mastermind and 4×6 Mastermind, we also 

investigate the effect of the traversing order during the search. In other words, we 

have to decide which query is promising when several queries are encountered after 

the current state is visited. To deal with this issue, we estimate the lower bounds of 

the child states by making use of the admissible heuristic before they are expanded. 

We sort their lower bounds and traverse these queries order-by-order in accordance 
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with their values. The smaller the value is, the earlier the traversal is. All experiments 

were run on a dedicated PC with an AMD Opteron 252 processor. The experimental 

results are exhibited in Table 5. 

Table 5. The experimental results of two versions of Mastermind 

 3×5 
Mastermind 

4×6 
Mastermind 

DFS > 10 hr. > 10 days 
DBB 38.68 sec. 43.76 hr. 

DBB (promising query) 11.21 sec. 9.5 hr. 
External path length 451 5625 

 

DFS is the abbreviation of depth-first search while the term, “promising query”, 

means that DBB expands the queries in nondecreasing order according to the values 

of lower bounds. We can see that DBB is able to obtain the optimal strategies for the 

two versions and their corresponding external path length is 451 and 5625, 

respectively. This means that the expected number of queries is about 4.34 

(≈5625/1296) for Mastermind if we apply the optimal strategy in the expected case. 

The results also show that DBB with the considerations of promising queries has the 

best performance. Without the judgement of promising queries, DBB will traverse a 

lot of useless queries. That is to say that most queries will be cut if DBB expands 

queries in the correct order. 

From the experimental results, DFS has very poor performance doubtlessly since 

it is certainly an exhaustive search. Hence, DFS can not search the full game tree in a 

reasonable time and the total number of the states it has to expand is still unknown. 

On the other hand, DBB is significantly superior to and is over 25 times faster than 

DFS. Totally, there are 137834651 states expanded by DBB. The results also reveal 

that the larger the search space is, the more important the pruning technique is. 
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2.4 Chapter Conclusion 

Previously, an exhaustive search was applied to find the optimal strategy for 

Mastermind. But it may not be adopted in other harder problems or games because of 

its huge search time. In this chapter, a more efficient depth-first backtracking 

algorithm with branch-and-bound pruning (DBB) for Mastermind in the expected 

case is introduced, and an alternative optimal strategy is obtained eventually. 

Moreover, an admissible heuristic, which can be applied to various deductive games, 

is presented as well. From the experimental results, the effect of expanding promising 

queries during the search is significant to the performance of DBB. Meanwhile, DBB 

is significantly superior to and is over 25 times faster than the traditional search 

algorithm. How to design a more precise admissible heuristic is yet another critical 

issue. Furthermore, it may be interesting to compare our method with other search 

algorithms or other heuristics mentioned in the previous studies with the consideration 

of the qualities of solutions and the search time. 

28 



 

Chapter 3                   

Refined Branch-and-Bound 

Algorithm with Speed-up Techniques 

Another famous deductive game is AB game, which is popular in Asia and 

England. However, to date, there have been no optimal expected-case strategies for 

AB game in formal literature since its appearance. Since the complexity of these 

deductive games grows at an exponential rate with higher dimensions, DBB can not 

be directly applied to efficiently solve AB game in the expected case. 

In this chapter, a refined branch-and-bound algorithm with speed-up techniques, 

which is abbreviated to RBB, is demonstrated for AB game in the expected case. This 

algorithm is based on DBB and three useful techniques such as the incremental update 

of the lower bounds, the hashing technique, and the reduction of equivalent queries 

are invented to integrate with it. Therefore, RBB will lead to the hope that the optimal 

tactic of AB game in the expected case is attained. Section 3.1 reviews our handled 

problem and compares the search space between Mastermind and AB game. Section 

3.2 introduces a refined branch-and-bound algorithm while new techniques and 

significant improvements are demonstrated here as well. In Section 3.3, some 

experimental results and discussions are given. Section 3.4 summarizes the 
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remarkable results in this chapter. 

3.1 Introduction 

AB game, which is also called “Bulls and Cows” in England, is another popular 

deductive game around the world for decades as well. Its dimension is 4×10 and there 

are also two opponents involved in this game, which are called the codemaker and the 

codebreaker respectively. There are ten symbols appearing in possible secret codes of 

AB game, e.g., 0, 1, 2, …, and 9. Note that the repeated symbols are not allowed in a 

single secret code. Thus, there are 10!/(10-4)! = 5040 valid secret codes in AB game. 

Meanwhile, the 14 legal responses of AB game, which are [4, 0], [3, 0], [2, 2], [2, 1], 

[2, 0], [1, 3], [1, 2], [1, 1], [1, 0], [0, 4], [0, 3], [0, 2], [0, 1], and [0, 0], are the same as 

those of Mastermind. The accurate definitions are exhibited in Chapter 1 and 

therefore, these descriptions are omitted here. 

The search space, which means all possible strategies the codemaker and the 

codebreaker can adopt, for 4×6 Mastermind and 4×10 AB game is compared in the 

following equation: 

( )
( )
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Notice that the upper part of the equation is the search space for 4×10 AB game while 

the lower one is that for 4×6 Mastermind. Clearly, the search space for 4×10 AB 

game is far larger than that for 4×6 Mastermind. Moreover, the search space 

represents the required time to discover an optimal strategy for the codebreaker since 

the expected number of queries is considered. Hence, it is clear that the difficulty of 

solving AB game is much harder than that of solving Mastermind. 

To the best of our knowledge, the optimal strategy of 4×10 AB game for the 

codebreaker has never been discovered and meanwhile, its corresponding expected 
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number of queries has not been determined yet due to its difficulty. In Chapter 2, a 

fruitful pruning framework, DBB, relied upon the admissible heuristic in the A* search 

was proposed to solve 4×6 Mastermind. However, it is not capable of solving 4×10 

AB game right away since it has much huger search space than 4×6 Mastermind. In 

this chapter, our goal aims at finding an optimal strategy of 4×10 AB game for the 

codebreaker to minimize the expected number of queries. 

3.2 A Refined Branch-and-Bound Algorithm with Speed-up 

Techniques 

A full search is theoretically conducted to our problem so as to consider the 

optimal tactic in the expected case. Because DBB can not solve the concerned 

problem directly, a refined approach based on it is demonstrated. Furthermore, the 

idea of DBB will be introduced briefly to make this chapter self-contained. 

3.2.1 The Fundamental Framework in Terms of Branch-and-Bound 
Pruning 

Although DBB proposed in Chapter 2 can not explore the game tree directly 

within a reasonable time, it remains a vital basis for us. Therefore, a brief introduction 

to DBB is still given here. 

DBB and the A* search act in a similar way. The A* search is regarded as a tree 

(graph) search algorithm which looks for a path from an initial state to a final goal 

with the lowest cost. It will terminate if a best solution is obtained. However, a full 

search is necessarily engaged in dealing with our problem because we need to 

calculate the value of the external path length of the game tree. Hence, DBB will 

carry out a search of the whole game tree and prune the useless states by taking 

advantage of an admissible heuristic. Notice that a solution described here denotes a 
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strategy for the codebreaker to identify a secret code with respect to our problem. 

Let h’ denote the cost from the root to the current state and h* be an estimated 

cost from the current state to a final state. Then, h* is called admissible if it never 

overrates the cost to reach the final state. In other words, the actual cost is less than or 

equal to h’ + h*. It can also be viewed as a theoretical lower bound for the problem we 

cope with. 

DBB first traverses the game tree in depth-first fashion until a final state is 

reached. It then gets an actual cost s which is initially assigned to be the current-best 

solution. Note that the actual cost s results from the query q1 in its traversed path. 

Afterwards, it soon backtracks to the current state, and picks one of the other queries, 

e.g., the query q2, and uses an admissible heuristic to estimate the cost h* of q2. The 

search continues if s is larger than h’ + h*. Otherwise, a cut happens because s is less 

than or equal to h’ + h*. This continues in a similar manner until the full game tree is 

searched. Figure 4 shows roughly the scenario and Figure 5 exhibits this algorithm. 

The current state is what we consider presently. An admissible heuristic will be used 

to estimate its cost h* and thus, h’ + h* is compared with the actual cost s to determine 

whether it should be cut or not. 

In accordance with the analyses in Table 1, the search space for AB game is 

(5040×14)7 ≈ 1034. Figure 8 shows the game tree of AB game by applying DBB 

directly. The circles in Figure 8 mean the states which are the sets of eligible secret 

codes while the diamonds are the valid queries the codebreaker can choose (5040 

queries in each ply). In the game tree, the 14 branches yielded by the codemaker’s 

responses should be traversed completely and the 5040 branches expanded by the 

codebreaker may be pruned by the admissible heuristic since we are aiming at finding 

an optimal strategy for the codebreaker. Let’s take the situation exhibited in Figure 8 

into account. The search to the subtrees of q1 (in bold style) is just finished and q2 is 
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now considered. An estimated value h* is obtained by using the admissible function. 

The subtrees below q2 do not have to be expanded if the result of expanding q1 is 

better than h*. 

 

Figure 8. The game tree of AB game by applying DBB directly 

The admissible heuristic presented in Section 2.2.2.2 with slight modifications of 

the volume of each legal class is utilized to estimate the lower bounds of the numbers 

of queries. Likewise, different queries in a certain ply result in different distributions 

of the eligible codes in the 14 responses. Similarly, the volume of a response [x, y] is 

also defined as the maximum value of the numbers of the eligible codes when the 

codemaker responses with [x, y]. The first query made by the codebreaker has only 

one choice here because all of the queries are equivalent at the first query. As a result, 

g = “0123” is selected as the representative for the first query. The numbers of eligible 

codes of each class after g is made form these volumes are concluded in Table 6. 

From the analyses in Section 2.2.2.2, the actual expected number of queries is thus 

larger than or equal to the value of estimations. An example to illustrate the 
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calculation of the EPL about some class (state) is shown in Figure 9. Notice that the 

only difference between Figure 7 and Figure 9 is their volumes. 

Providing a state with a size of 17, as shown in Figure 9, we imagine that the 

theoretical optimal strategy will distribute the 17 codes into 14 responses evenly 

without exceeding the corresponding volumes and so does the optimal strategy in 

each of the following levels of the game tree. The number in the lower half of the 

circle is the volume of each response and the number in the upper half is the number 

of secret codes in it. 

Since there is 1 leaf at level 1, 13 leaves at level 2, and 3 leaves at level 3, it is 

obvious that the external path length of the tree is 1×1 + 2×13 + 3×3 = 36. Thus, the 

actual external path length of a state with a size of 17 must be larger than or equal to 

36. The heuristic is therefore admissible because it never overrates the expected 

number of queries. 

Table 6. The volumes of 14 classes in AB game 

class [4, 0] [3, 0] [2, 2] [2, 1] [2, 0] [1, 3] [1, 2] [1, 1] [1, 0] [0, 4] [0, 3] [0, 2] [0, 1] [0, 0]

volume 1 24 6 72 180 8 216 720 480 9 264 1260 1440 360
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Figure 9. An example of the calculation of the admissible heuristic for AB game 
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3.2.2 The State-of-the-Art Techniques 

The fundamental framework has been reviewed in Section 3.2.1. It has been 

proven dramatically that the algorithm is highly suitable for addressing deductive 

games. However, it is not enough to handle AB game in the expected case. Some 

attributions of the game are observed seriously so that three critical challenges are 

summarized as follows. 

 How to increase the precision of the lower bound? 

 How to avoid expanding the redundant states? 

 How to prune the equivalent queries? 

An optimal strategy will be discovered providing that these challenges are able to 

be coped with totally. Fortunately, a refined branch-and-bound algorithm with 

speed-up techniques (RBB) is designed and three useful techniques contained in it are 

introduced and discussed among the follow-up contents. 

3.2.2.1 Technique 1: Incremental Updates of the Lower Bounds 

During the gaming process, there will be generally 5040 queries for the 

codebreaker in each ply. When a new state is met, a current best solution s is acquired 

after DBB undertakes a search to one of the 5040 branches. Thus, DBB has to check 

other queries and two possible cases are going to take place. One case is that the rated 

lower bound of the query is less than s, and then the search into it occurs. The other 

case is that the search will be omitted according to branch-and-bound pruning because 

s outperforms this rated lower bound. Obviously, this mechanic of the process comes 

up with a new idea naturally. The percentage of the cutoffs is going to increase 

markedly if the estimated lower bounds become higher by calculating it more 

accurately. Concrete steps are offered below. 

Suppose that the current best solution s is provided by the query g. There is 
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another query called g* that we analyze now and moreover, s* refers to the lower 

bound which has been rated by the admissible heuristic H at the beginning. Assume 

that s* is less than s. It is clear that the subtree yielded by g* has to be explored in 

accordance with our proposed manner. However, we come up with an idea to update 

the lower bound incrementally during the exploring process of g* so as to stop 

searching as soon as possible providing that s* becomes equal to or larger than s. In 

the detailed considerations, g* divides the current state into 14 classes (responses) so 

that H is able to rate its external path length (EPL) with the 14 classes. Hence, s* is 

summed with the 14 rated numbers. When every class has been traversed, a real EPL 

of this class is available as well. Once a real cost of exploring the class has been 

acquired, an update to s* happens immediately. Furthermore, s* grows gradually as we 

explore these classes one by one. 

. . .g g*

s

s*

s* grows gradually during
the search to this subtree.

 

Figure 10. A situation that depicts the exploring process 

When an update happens, s competes with the up-to-date s* at the same time. The 

exploring process of g* stops if s* is equal to or larger than s. Otherwise, it keeps on 
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working until the subtree formed by g* is searched entirely. And the follow-up actions 

are performed with the use of DBB as usual. A situation that depicts the searching 

process is shown in Figure 10. Meanwhile, the bold lines and shaded areas highlight 

whatever has already been searched and s* is the latest lower bound until now. 

3.2.2.2 Technique 2: Earlier Terminations 

It is trivial that the game is over if there exists only one choice for the 

codebreaker and he has just figured it out. It is also clear that the searching process 

should be terminated if we are aware of the external path length (EPL) of some states 

precisely. Accordingly, a critical issue for obtaining the exact EPL of some states has 

arisen. It is highly difficult to know the exact EPL without conducting a search when 

the state is larger. In this case, there is a chance to get it more early only if the state is 

smaller enough. In order to cope with this, two types of pruning methods are proposed 

to achieve the goal of earlier terminations if the size of a state is below 12. 

 Theoretical pruning 

If the size of a state is 2, it is easy to notice that the game tree in Figure 11 

is optimal and its EPL is therefore 3. 

[4, 0]

[4, 0]

Size = 2

Size = 1

 

Figure 11. An optimal strategy for a state with a size of 2 

On the other hand, the size of a state is 3 is then taken into account. We 

notice that two situations occur. One is that the tactic for this state chooses 

one of these three eligible codes as the next query. This will result in a [4, 0] 
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class appearing in its game tree. The left portion, i.e. (a) and (b), of Figure 

12, in which there exist two kinds of possible trees, indicates the 

phenomenon. The other situation is also offered in the right portion, i.e. (c), 

(d), and (e), of Figure 12, where there are three possibilities in addition. The 

right part implies that the codebreaker chooses one query from all possible 

codes except the three ones in this state. Note that the scenario of (e) 

describes that the size of the state still remains 3 after the query in this ply 

is taken, where EPL' is the external path length of the following state. In 

other words, there is no use making this query but to increase its EPL by 3 

in addition. 

EPL = 7

Size = 3

EPL = 6

Size = 3

EPL = 6

EPL = 5

[4, 0]
Size = 3

[4, 0]

EPL = EPL' + 3

...

Size = 3

Size = 3

[4, 0]

[4, 0]

Size = 3

Size = 2

(a)

(b)

(c)

(d)

(e)

 

Figure 12. All possible game trees for a state with a size of 3 
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By perceiving the overall figure, the EPLs for the left trees are 5 and 6 

respectively while those of the right ones are 6 and above. It means that an 

optimal strategy will be generated only by taking the left two trees into 

account. In this case, the correlations among the three eligible codes should 

be considered. Assume that the three queries (secret codes) are named as g1, 

g2, and g3, where their correlations are r12, r23, and r31 respectively. The 

correlation here indicates the response made by the codemaker providing 

that one of these three queries is his secret code when the codebreaker takes 

another query from the two residual codes. Note that the optimal EPL for a 

state with a size of 3 is 6 if r12, r23, and r31 are all equal, i.e. the situation of 

Figure 12(b). Otherwise, the optimal EPL must be 5 as shown in Figure 

12(a). With this observation, the optimal EPL can be easily calculated 

without searching all the 5040 valid queries. 

From the above theoretical analyses, we know that the EPL of a state can be 

easily determined if the state is able to be analyzed. In other words, 

theoretical pruning of valid queries is feasible if the size of a state is 2 or 3. 

 Practical pruning 

In accordance with the previous analyses, it seems to be intuitive that DBB 

will terminate and backtrack earlier if the optimal EPL can be decided as 

earlier as possible. Furthermore, a crucial property is realized by 

investigating the game tree when the size is sufficiently small. It reveals 

that the full game tree is filled with duplicated states with smaller sizes. 

This discovery comes up with a good idea which is able to reduce the 

searching time by storing the EPLs of explored states, whose size are 

between 4 and 12. By utilizing the concept, a hash table is implemented 

naturally to meet the requirement. The Zobrist hashing approach [74] is 
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adopted as a hash function and a simple replacement method, in which a 

new record just replaces the value that is already in the corresponding slot, 

is employed to resolve collisions. Due to the low collisions of the Zobrist 

hashing method, the simple replacement policy is highly efficient for our 

problem. Before the use of the Zobrist hashing method, a random number is 

generated for each possible secret code and represents this corresponding 

code in the searching process. Suppose that we now have a state with n 

eligible codes, where the value of n is between 4 and 12. All corresponding 

random numbers of the n codes are XORed together and the result modulo 

the size of the hash table is computed to acquire a hash key, which 

represents the corresponding position for storing this state in the hash table. 

So, the information of the state and its corresponding optimal EPL are 

stored in this position after the state has been explored. Once a collision 

occurs, the new record just replaces the old one that is already in the 

corresponding position. The EPLs are going to be looked up in the hash 

table when new states are encountered. Although the hash table is designed 

in a basic manner, it has contributed substantial performance improvements. 

The experimental results will clarify the progress in the later discussions. 

Note that the hash table occupies about 1.6 Gbytes memory because it has 

225 entries and each entry contains 13 integers (one for storing the EPL and 

12 for keeping the 12 secret codes at most). From an informal test, the 

performance is better if an entry stores the state whose size is at most 12. 

Remember that the larger the state which is stored in an entry of the hash 

table is, the more time our program should take if the program has to decide 

whether the current state is traversed or not. 

Due to the huge number of codes in larger states and the huge amount of memory 
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space for storing the larger states and their EPLs, the states whose sizes go above and 

beyond 12 will not be held in the hash table. This implies that a normal search is 

carried out to them. 

3.2.2.3 Technique 3: Reductions of Equivalent Queries 

The technique introduced in Section 3.2.2.2 focuses on pruning the leaves in the 

game tree. Moreover, an overall subtree will be cut thoroughly if we can reduce the 

number of the choices the codebreaker has to concern about at the first few queries. 

At the first query, only one choice, instead of 5040 secret codes, should be considered 

because there are no symbols that are used before and the 5040 codes are therefore all 

equivalent. “0123” is adopted as the first query here. At the second query, only four 

out of ten symbols are used by the first query and the other six unused symbols (4, 

5,.. , and 9) can be treated as equivalent ones. Hence, at the second query, we can only 

consider  nonequivalent codes, where i is the number of 

symbols used at both the first and the second queries. Furthermore, 20 equivalent sets 

that come from further categorizing the 209 codes are gained by employing the 

concept of equivalence transformation demonstrated by Neuwirth 

( ) ( ) 209,4,4
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=×∑
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iPiC

[53]. An 

equivalence transformation is defined as a composition of a permutation on the set of 

colors, called C, and a permutation on the set of positions, called P. For instance, an 

equivalence transformation t is defined as follows: 
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Then, the query, “0132”, is equivalent to “0213” while t(0132) = 0213. Furthermore, 

a crucial property, strategy equivalent, which can help us to reduce the search space, 

is described in Definition 11 of Chapter 1. In other words, we can only take p1 as a 

representative for computing an optimal strategy if p1, p2, …, pn are strategy 

equivalent. The equivalent secret codes at the first three queries can be obtained by 
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using exhaustive search to verify each possible strategy or making use of the algebra 

package, Nauty, which is a program based on the paper introduced by McKay [50] for 

computing isomorphism and automorphism groups of graphs. 

Table 7, in which each row stands for an equivalent set, lists all of the 209 codes and 

their categories with the use of the concept of strategy equivalent codes at the second 

query. Their corresponding equivalence transformations are attached at Appendix A 

as a proof. The equivalence transformations of strategy equivalent codes at the third 

query are not listed due to space restrictions. In Table 7, the first code in every row, 

which is highlighted with bold letters, is chosen as the representative since the codes 

in the same row are all strategy equivalent. 

Table 7. 20 equivalent sets of the 209 codes at the second query 

Order Elements of each set 
1 0123 
2 0132, 0213, 0321, 1023, 2103, 3120 
3 4567 
4 0231, 0312, 1203, 1320, 2013, 2130, 3021, 3102 
5 1032, 2301, 3210 
6 1230, 1302, 2031, 2310, 3012, 3201 
7 0124, 0143, 0423, 4123 
8 0456, 4156, 4526, 4563 
9 0145, 0425, 0453, 4125, 4153, 4523 

10 1456, 2456, 3456, 4056, 4256, 4356, 4506, 4516, 4536, 4560, 4561, 4562 
11 0134, 0142, 0243, 0324, 0413, 0421, 1423, 2143, 3124, 4023, 4103, 4120 

12 
0245, 0345, 0415, 0435, 0451, 0452, 1425, 1453, 2145, 2453, 3145, 3425, 
4025, 4053, 4105, 4135, 4150, 4152, 4253, 4325, 4503, 4513, 4520, 4521 

13 1045, 2405, 3450, 4215, 4351, 4532 

14 
1245, 1345, 1405, 1450, 2045, 2415, 2435, 2450, 3045, 3405, 3451, 3452, 
4015, 4051, 4205, 4235, 4251, 4315, 4350, 4352, 4502, 4512, 4530, 4531 

15 1435, 1452, 2345, 2451, 3245, 3415, 4035, 4052, 4250, 4305, 4501, 4510 
16 0214, 0341, 0432, 1024, 1043, 2104, 2403, 3140, 3420, 4132, 4213, 4321 

17 
0234, 0241, 0314, 0342, 0412, 0431, 1243, 1324, 1403, 1420, 2043, 2134, 
2140, 2413, 3024, 3104, 3142, 3421, 4013, 4021, 4102, 4130, 4203, 4320 

18 1034, 1042, 1432, 2304, 2341, 2401, 3214, 3240, 3410, 4032, 4210, 4301 

19 
1234, 1240, 1304, 1342, 1402, 1430, 2034, 2041, 2314, 2340, 2410, 2431, 
3014, 3042, 3204, 3241, 3401, 3412, 4012, 4031, 4201, 4230, 4302, 4310 

20 1204, 1340, 2014, 2430, 3041, 3402, 4231, 4312 
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In spite of declining the branching factors of the game tree at the first three 

queries, there are still numerous choices in the following plies. A similar mean is 

thereby going to be provided so as to reduce the possibilities at the fourth query. All 

of the unused symbols during the first three queries are treated as the same one. In 

short, those choices, in which a few digits contain the same used symbols in the same 

digits and the rest digits are composed of other unused symbols, are equivalent 

definitely. 

For example, providing that the first three queries are “0123”, “1045”, and 

“1758” respectively, both “3869” and “3896” will belong to the same equivalent set 

because 6 and 9 are not used in the previous queries. With this simple concept, the 

number of the fourth query will be declined extremely in average and the concrete 

results are going to be presented in the next section as well. 

3.3 Experimental Results and Discussions 

This section presents two parts of outcomes which result from the proposed 

techniques. The first part is to exhibit the individual effects according to each of the 

three techniques. The second one will make a comparison between DBB and RBB by 

applying them separately to Mastermind, which has a much smaller search space. This 

may indicate how efficient our new method is. Finally, AB game is drawn on it and 

we thereby attain the success in finding the optimal tactic in the expected case. Notice 

that all the experiments are run on a DELL Precision 7400 Workstation equipped with 

a Quad-Core Intel Xeon X5450 CPU and 8 Gbytes RAM. Only a single core is 

utilized at a time due to the sequential programs regardless of a multi-core CPU. 

3.3.1 The Effects of the Three Useful Techniques 

Table 8 shows the effects with the incremental updates of the lower bounds. Note that 

43 



 

Technique 2 and Technique 3 are integrated into the programs either with or without 

Technique 1 in this experiment in order to save an enormous amount of running time. 

The left column in Table 8 indicates the selected states with some proper sizes after 

making the first query for AB game. 

For example, C[3, 0] refers to the state after the codemaker replies [3, 0] and |C[3, 0]| 

is consequently the number of its eligible codes. The right two columns present the 

running time required to traverse each subtree of the corresponding state either with 

or without the use of Technique 1. It is obvious that the speedup of Technique 1 is by 

a factor of about 5 for some larger states, e.g. C[1, 1], C[1, 0] and C[0, 2]. It also shows that 

the larger the size of the state is, the higher the speedup is. 

Table 8. The running time of exploring some states after making 1st query 

Size of the state Without Technique 1 (Seconds) With Technique 1 (Seconds) 
|C[2, 1]| = 72 20 11 
|C[2, 0]| = 180 121 41 
|C[1, 2]| = 216 357 120 
|C[1, 1]| = 720 47645 8386 
|C[1, 0]| = 480 3001 518 
|C[0, 3]| = 264 1361 317 
|C[0, 2]| = 1260 1616865 148592 

 

An evaluation to Technique 2 is depicted in Table 9 and Table 10. The statistics 

of counting up the numbers of the descendant states with a size of 3 for some states 

are conducted within Table 9. For instance, there are totally 418161 descendant states 

that contain 3 eligible codes while a search to C[1, 2] has been undertaken. The result 

represents the numbers of the cases that Technique 2 can be applied, so the optimal 

tactic for these states will be gained quickly and easily. This means we can save much 

time because we do not examine all the 5040 choices in the next ply. On the other 

hand, the hash table demonstrated in Technique 2 may sometimes be viewed as a 

cache and detailed information to its performance is thus listed in Table 10. 

44 



 

Table 9. The numbers of the descendant states with a size of 3 

States # of the descendant states with a size of 3
C[3, 0] 4540 
C[2, 1] 28474 
C[2, 0] 12042 
C[1, 2] 418161 
C[1, 0] 91826 
C[0, 3] 1627148 

 

Note that the corresponding random number for each secret code is 64 bit and the 

size of the hash table is 225 in our implementation. The state, C[1, 2], is taken to serve 

as an example for the illustration. It means that 366621 states whose sizes vary from 4 

to 12 are able to be looked up in the table directly as 27375 ones are not available in it 

and they have to be explored thoroughly and then be inserted into the table. The hit 

rate, which is 366621 divided by (366621+27375), is thereby about 0.931. The hash 

table occupies about 1.6 Gbytes memory in our design and receives a considerable 

performance promotion. 

Table 10. The numbers of hits and misses by using the hash table 

States # of hits # of misses Hit rate 
C[3, 0] 3434 502 0.872 
C[2, 1] 11863 1815 0.867 
C[2, 0] 20350 8160 0.714 
C[1, 2] 366621 27375 0.931 
C[1, 0] 163347 106346 0.606 
C[0, 3] 1698126 65811 0.963 

 

The results shown in Table 11 provide the assessments of Technique 3. Recall 

that the numbers of the choices taken by the codebreaker in the first two plies are 1 

and 20 respectively. Table 11 lists the numbers of the third choice and the average 

numbers of the fourth choice the codebreaker can make and meanwhile, the numbers 

for the first two choices are offered in it as well. 
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Table 11. The numbers of choices at the first four queries 

1st query 2nd query # of choices at the 3rd query Average # of choices at the 4th query
0123 0123 20 852.85 
0123 0124 107 1296.66 
0123 0132 67 809.37 
0123 0134 270 1255.17 
0123 0145 295 1993.36 
0123 0214 270 1255.17 
0123 0231 75 790.99 
0123 0234 501 1234.25 
0123 0245 1045 1959.62 
0123 0456 363 3020.61 
0123 1032 39 807.97 
0123 1034 270 1255.17 
0123 1045 295 1993.36 
0123 1204 175 1246.02 
0123 1230 59 783.29 
0123 1234 501 1234.25 
0123 1245 1045 1959.62 
0123 1435 541 1957.71 
0123 1456 1012 3008.06 
0123 4567 180 4162.67 

 

From Table 11, it is easy to realize that the numbers of the third choice vary from 

20 to 1045, i.e. 356.50 in average, which occupies 7.07% of the original 5040 choices. 

Moreover, it also shows that the average number of the fourth choice is 1643.81, 

which is 32.62% of the original 5040 choices. Therefore, a considerable amount of 

redundant choices at the first four queries has been removed with the use of 

Technique 3. In fact, the search space of the entire game tree has roughly become 

(1×14)⋅(20×14)⋅(356.50×14)⋅(1643.81×14)⋅(5040×14)3, where 356.50 and 1643.81 are 

the averages of the branching factors at the third and fourth queries respectively. 

3.3.2 Performances and Results of RBB for Solving Mastermind and 
AB Game 

In order to examine the performance, a deductive game with smaller dimensions, 
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Mastermind, is first explored with the proposed approach composed of all significant 

refinements except Technique 3. Technique 3 can not be applied in Mastermind 

because repeated symbols are allowed in the queries of the game. The program relied 

upon RBB therefore finished the work with 43 minutes in the experiment and gained 

the optimal EPL that is 5625. This means that the expected number of queries of the 

optimal strategy in the expected case for Mastermind is 5625/64 ≈ 4.34. On the other 

hand, it has to take 451 minutes to complete the same work with the use of DBB. 

Hence, RBB outperforms DBB by 10 times faster only with the first two techniques. 

Note that DBB explores 137834651 states during the searching process while RBB 

only expands 31720272 states. 

With the success, RBB integrating all the three techniques to find the optimal 

tactic of AB game in the average case was thereby undertaken. An invaluable result 

was eventually gained in about 18 days (From Nov. 6, 2008 to Nov. 23, 2008). The 

optimal strategy for AB game was therefore obtained and its corresponding EPL is 

26274. Moreover, a partial strategy is also presented in Appendix B. Now we have the 

following theorem. 

Theorem 1. The expected number of queries of the optimal strategy in the expected 

case for AB game is 26274/5040 ≈ 5.213. 

3.4 Chapter Conclusion 

In this chapter, we focus on finding the optimal strategy in the expected case for 

AB game. An elegant approach, which is named as refined branch-and-bound 

algorithm with speed-up techniques (RBB), essentially based on the incremental 

update of lower bounds, the hashing technique, and the reduction of equivalent 

queries is designed to explore its huge search space. In the development of pruning 

techniques, we also realize that the ratio of pruning is significant if the pruning is 
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based on theoretical analyses. In order to compare RBB with DBB, Mastermind is 

first addressed by applying these two methods individually. A dramatic improvement 

is exhibited in the outcomes and RBB outperforms DBB over 10 times faster. 

Fortunately, an optimal strategy for AB game in the expected case is eventually 

obtained by utilizing RBB. The corresponding external path length is 26274. In other 

words, the expected number of queries required by the codebreaker is 26274/5040 ≈ 

5.213. Note that Appendix B attached at the end of this dissertation contains the 

partial optimal strategy for AB game, which is discovered by RBB. 
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Chapter 4       

Structural-reduction Approach 

In this chapter, a sophisticated method, called structural-reduction approach 

(SR), which aims at explaining the worst situation in 3×n AB games is developed. 

Section 4.1 introduces our addressed problem and additional definitions that are used 

in this chapter. Section 4.2 analyzes the optimal strategies for the codebreaker and the 

devil’s strategy for the codemaker. In Section 4.3, a practical example is offered to 

describe the pessimistic situation of this game. Section 4.4 concludes with our 

analyses and a worthwhile formula for calculating the optimal numbers of queries 

required for arbitrary values of n is derived and proven finally. 

4.1 Introduction 

3×n AB games means that there are 3 digits in a single secret code and each digit 

has n possibilities (symbols). Suppose that the set of symbols appearing in 3×n AB 

games is S = {0, 1, 2, …, n − 1}. From the analyses of Chapter 1, the number of all 

legal responses is 9 and these responses are [3, 0], [2, 0], [1, 2], [1, 1], [1, 0], [0, 3], [0, 

2], [0, 1], and [0, 0] respectively. Meanwhile, the number of all possible secret codes 

equals to n(n − 1)(n − 2) as well. For example, assume that the codemaker chooses c = 

215 as a secrete code and the codebreaker makes a query g = 012. Then, the 

codemaker will offer a response [1, 1]. 
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Before 3×n AB games are discussed formally, some additional definitions besides 

those offered in Chapter 1 have to be explained first in order to describe the analyses 

precisely. Thus, they are defined as follows. 

Definition 12. Let C1 and C2 denote two states in the game tree. We say that C1 is 

harder than C2 if identifying a secret code in C1 requires more queries 

than that in C2. In other words, the difficulty of a state means how 

many queries the codebreaker requires to identify a secret code. 

Definition 13. A strategy of responses taken by the codemaker is called a devil’s 

strategy or an adversary response if this strategy maximizes the 

number of queries required by the codebreaker. 

Definition 14. Suppose that there are two states, which are C1 and C2 respectively. If 

there exists a one-to-one function r such that each secret code in C1 

maps another one in C2 and preserves the structure of C1, then we say 

that C2 dominates C1. Furthermore, r is called a structural reduction. In 

symbols, we write C1 ≤ C2. 

Now, 3×5 AB game is taken into account as an illustrative example. Suppose that 

the set of five symbols in this simple game is S = {0, 1, 2, 3, 4}. If the codebreaker 

makes a query, 012, and the codemaker responses [2, 0] in the first ply, the eligible 

codes are therefore 013, 014, 032, 042, 312, and 412 after the first ply. The set C[2,0] = 

{013, 014, 032, 042, 312, 412} forms a state. From the result of the later experiment, 

which conducts an exhaustive search to 3×5 AB game, the number of queries required 

is maximum if the codemaker implements a devil’s strategy to provide the response, 

[0, 2], at the first response. 

On the other hand, C[2,0] and the state, C[1,0] = {043, 034, 432, 342, 314, 413}, 

which is produced when the codemaker responses [1, 0] at the first response, are then 
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considered. Notice that the elements in C[2,0] are of the forms, 01b, 0b2, or b12, where 

. Thus, we define a structural reduction of r as { }4,3=∈ Bb
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Figure 1 exhibits the mapping of each code in C[2,0] in detail. Note that the mapped 

codes in C[1,0] preserve the structures of those in C[2,0]. This implies that finding a 

secret code in C[1,0] is as hard as or harder than that in C[2,0]. Intuitively, this is also 

obvious since there is one more identified symbols in C[2,0] than in C[1,0]. Hence, we 

say that C[1,0] dominates C[2,0]. Furthermore, the structural reduction has the property 

of the transitive relation obviously. That is to say that given three states, C1, C2, and 

C3, C1 ≤ C3 if C1 ≤ C2 and C2 ≤ C3. 

013
014
032
042
312
412

043
034
432
342
314
413

r

C[2, 0] C[1, 0]

 
Figure 13. Mapping from codes in C[2,0] to those in C[1,0] for 3×5 AB game 

4.2 Optimal Analyses for the Codebreaker and the 

Codemaker 

In this section, we divide the analyses into two parts. The first part discuss a 

special kind of states C* that will be considered to determine the best query for the 

codebreaker when he encounters this kind of states. Then, the discussion in the next 

51 



 

part will reveal that the special states that are discussed here just match the attribution 

of states resulting from the devil’s strategy for the codemaker. Consequently, our 

conclusions are attained finally. 

4.2.1 Analyses of the Optimal Queries for the Codebreaker 

Before the formal discussion, a critical concept should be clarified first. 

Intuitively, the more secret codes a state has, the harder the codebreaker identifies a 

secrete code in it. However, the rule is not absolutely correct especially when the size 

of one state is very close to that of the other. Hence, the structural reduction is 

adopted to determine the difficulties of two states instead of simply comparing their 

sizes in the following discussion. 

Suppose that S = {0, 1, 2, ..., n − 1} represents the set of symbols appearing in 

3×n AB games. The set, B = {b0, b1, ..., bh-1}, is a subset of S, where bi ∈ S and |B| = h, 

3 ≤ h ≤ n − 3. Moreover, another set, A, is defined as A = S − B = {a0, a1, ..., an-h-1}, 

whose cardinality is (n − h). 

Assume that there is a special state, called C*, which consists of the secret codes 

that are all possible permutations of h symbols in B. In other words, the special state 

has h(h − 1) (h − 2) secret codes in it. This state may be regarded as a subproblem of a 

3×n AB game, i.e. a 3×h AB game. Notice that the symbols in A do not appear in the 

codes of the special state because of the definition of C*. We can intuitively treat the 

symbols in A as those eliminated from previous responses made by the codemaker. 

Now, imagine a scenario where C* is encountered for the codebreaker during the 

process of playing a 3×n AB game. Since any symbols in S may be used in a query 

made by the codebreaker for a 3×n AB game, all possible queries for the codebreaker 

can be classified into four types according to the numbers of symbols that belong to A 

and B. Thus, the four types of queries for the codebreaker are listed and discussed as 
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follows. Here we suppose that ai, aj, ak ∈ A and bi, bj, bk ∈ B. 

1. aiajak 

All symbols of this type of queries belong to A. If the codebreaker makes this kind 

of queries, all eligible codes are then classified into the substate, C[0,0], trivially. So, 

the queries of Type 1 are redundant and non-optimal results will be obtained if the 

codebreaker chooses this kind of queries. 

2. bkaiaj, aibkaj, and aiajbk 

The queries of Type 2 contain two symbols in A and one symbol in B. This type of 

queries can be further divided into three kinds of queries such as bkaiaj, aibkaj, and 

aiajbk in accordance with their positions of symbols. Without loss of generality, g = 

bkaiaj is taken to conduct the following analyses. The discussions of the other two 

can be undertaken in a similar way. Three nonempty substates, which are C[1,0], 

C[0,1], and C[0,0], are produced as the codebreaker makes the query g. Note that their 

cardinality are (h − 1)(h − 2), 2(h − 1)(h − 2), and (h − 1)(h − 2)(h − 3) respectively. 

Now, we can show that C[0,1] ≤ C[0,0] and C[1,0] ≤ C[0,0] if h ≥ 5. 

Lemma 1. If the codebreaker encounters the state, C*, and then makes the query, g 

= bkaiaj, aibkaj, or aiajbk, where ai, aj ∈ A and bk ∈ B, then C[0,0] 

dominates C[0,1] and C[1,0] if h ≥ 5. 

Proof. In order to prove that C[0,1] ≤ C[0,0], a structural reduction, r1, is defined as 

{ } { }⎩
⎨
⎧

−′∈−=′∈ .,,and,where,
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From r1, it reveals that the structures of the secret codes, which are bp?bq and bpbq?, 

are preserved after mapping. Note that bpz1bq and bpbqz2 should be distinct to 

reserve the property of one-to-one mapping. We can achieve this by assigning the 

symbols of z1 and z2 carefully while mapping is conducted. On the other hand, there 

should be two symbols left for the assignments of z1 and z2 once bp and bq have 
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been fixed during the mapping. The proof is therefore correct if h ≥ 5. The proof of 

C[0,1] ≤ C[0,0] is finished now. Afterwards, another structural reduction, r2, is defined 

as 

{ } { }.,and,where,: 112 qpkqpqpqpk bbBzbBBbbbbzbbbr −′∈−=′∈a  

There should be one symbol left for the assignment of z1 once bp and bq have been 

assigned. Hence, the proof is right if h ≥ 4. In other words, C[1,0] ≤ C[0,0]. From the 

results of r1 and r2, we know that C[0,0] dominates C[0,1] and C[1,0] when h ≥ 5. This 

completes the proof of Lemma 1.                                       

3. aibjbk, bjaibk, and bjbkai 

The queries of this type are composed of a symbol in A and two symbols in B. 

These queries can also be further classified into three kinds of queries, i.e., aibjbk, 

bjaibk, and bjbkai. Without loss of generality, g = aibjbk is choosen to undertake the 

following discussions. Besides, the analyses of bjaibk and bjbkai can be derived in a 

similar way and so, they are omitted here. There are six nonempty substates after 

the codebreaker makes the query g. They are C[2,0], C[1,1], C[0,2], C[1,0], C[0,1], and 

C[0,0] respectively. Note that their corresponding cardinality are (h − 2), 2(h − 2), (h 

− 2), 2(h − 2)(h − 3), 4(h − 2)(h − 3), and (h − 2)(h − 3)(h − 4). Now, we show that 

C[0,0] dominates the other five substates if h ≥ 8. 

Lemma 2. If the codebreaker encounters C*, and then makes the query, g = aibjbk, 

bjaibk, or bjbkai, where ai ∈ A and bj, bk ∈ B, then C[0,0] dominates C[0,1], 

C[1,0], C[0,2], C[1,1], and C[2,0] when h ≥ 8. 

Proof. Five structural reductions, called r3, r4, r5, r6, and r7, are defined as follows 

to certify that C[0,1] ≤ C[0,0], C[1,0] ≤ C[0,0], C[0,2] ≤ C[0,1], C[1,1] ≤ C[1,0], and C[2,0] ≤ 

C[1,0] respectively. 
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{ } { }.and,where,: 117 pkjpjpkjp bBzbbBBbzbbbbbr −′∈−=′∈a  

Note that z1bpbq, bpbqz2, z3bpbq, and bpz4bq in r3 should be distinct to reserve the 

one-to-one mapping property. Likewise, bpz1bq and bpbqz2 in r4 should be distinct 

and bjz1bp, bpz2bj, and bkbpz3 in r5 should also be distinct while z1bjbp and z2bpbk in 

r6 have to be distinct as well. We can attain this with assigning these symbols of z1, 

z2, z3, and z4 carefully when mapping is undertaken. In order to meet requirements 

of the assignments of zi in r3, r4, r5, r6, and r7, the following conditions should be 

maintained respectively: h ≥ 8, h ≥ 6, h ≥ 6, h ≥ 5, and h ≥ 4. Consequently, it is 

true that C[0,0] dominates C[0,1], C[1,0], C[0,2], C[1,1], and C[2,0] while h ≥ 8. Hence, the 

proof of Lemma 2 is completed.                                        

4. bibjbk 

All symbols of this kind of queries belong to B entirely. There are totally nine 

nonempty substates, which are C[3,0], C[1,2], C[0,3], C[2,0], C[1,1], C[0,2], C[1,0], C[0,1], and 

C[0,0] respectively, as the codebreaker makes the query, g = bibjbk. Notice that their 

cardinality are 1, 3, 2, 3(h − 3), 6(h − 3), 9(h − 3), 3(h − 3)(h − 4), 6(h − 3)(h − 4), 
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and (h − 3)(h − 4)(h − 5) respectively. In the following statements, we would 

certify that C[0,1] ≤ C[0,0], C[1,0] ≤ C[0,0], C[0,2] ≤ C[0,1], C[1,1] ≤ C[1,0], C[2,0] ≤ C[1,0], C[0,3] 

≤ C[0,0], C[1,2] ≤ C[0,0], and C[3,0] ≤ C[0,0]. 

Lemma 3. As the codebreaker encounters C*, and then makes the query, g = bibjbk, 

where bi, bj, bk ∈ B, then C[0,0] dominates C[0,1], C[1,0], C[0,2], C[1,1], C[2,0], 

C[0,3], C[1,2], and C[3,0] when h ≥ 11. 

Proof. Since the cardinalities of C[3,0], C[1,2], and C[0,3] are fixed numbers, then C[0,0] 

trivially dominates C[3,0], C[1,2], and C[0,3] as long as there are at least three symbols 

in B and thus, the three symbols can be permuted appropriately to map the three 

substates. On the other hand, five definitions of structural reductions, which are 

named as r8, r9, r10, r11, and r12, are provided as follows to confirm that C[0,1] ≤ C[0,0], 

C[1,0] ≤ C[0,0], C[0,2] ≤ C[0,1], C[1,1] ≤ C[1,0], and C[2,0] ≤ C[1,0] respectively. 
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Note that each secret code in each structural reduction, i.e., r8, r9, r10, r11, and r12, 

should be distinct from each other to reserve the one-to-one mapping property. This 

can be attained by assigning these symbols of z1, z2, z3, z4, z5, and z6 carefully. On 

the other hand, to satisfy each assignment of zi in r8, r9, r10, r11, and r12, the 

following constraints have to be kept respectively: h ≥ 11, h ≥ 8, h ≥ 6, h ≥ 6, and h 

≥ 5. So, it is therefore correct that C[0,0] dominates C[0,1], C[1,0], C[0,2], C[1,1], C[2,0], 

C[0,3], C[1,2], and C[3,0] when h ≥ 11. Hence, the proof of Lemma 3 is completed.   

 

After four kinds of queries for the codebreaker are discussed, only three kinds of 

queries among them are useful since the first one causes non-optimal results trivially. 

In order to simplify the notations, let C(2), C(3), and C(4) denote the hardest states 

caused by queries of Type 2, Type 3, and Type 4 respectively. Hence, the difficulties 

of these three states have to be determined to choose the best query for the 

codebreaker. The following lemma therefore describes the phenomena. 

Lemma 4. When the codebreaker encounters C*, the hardest states caused by queries 

of Type 2, Type 3, and Type 4, i.e. C(2), C(3), and C(4), are produced. Thus, 

we have C(4) ≤ C(3) ≤ C(2). 

Proof. From the meanings of C(2), C(3), and C(4), it reveals that C(2) is composed of 

secret codes that are permutations of (h − 1) symbols, and C(3) consists of what are 
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permutations of (h − 2) symbols while the codes in C(4) are permutations of (h − 3) 

symbols. Let S(2), S(3), and S(4) denote the sets of symbols appearing in C(2), C(3), and 

C(4) respectively. Then, let the symbols in S(2), S(3), and S(4) be sorted separately 

according to the lexicographical order. A mapping is generated naturally if we map 

each symbol in S(4) to that in S(3) one by one in sorted order. So does the mapping 

between S(3) and S(2). Obviously, we have C(4) ≤ C(3) ≤ C(2). This proof is completed 

entirely.                                                             

Concluding with Lemma 1, Lemma 2, Lemma 3, and Lemma 4, we have the 

following lemma. 

Lemma 5. For a special state, C*, which also represents a 3×h AB game (11 ≤ h ≤ n), 

the optimal query for the codebreaker now is bibjbk, where bi, bj, bk ∈ B. 

Proof. From Lemma 4, C(4) is the easiest state to identify a secret code compared to 

C(2) and C(3). The goal of the codebreaker is to minimize the number of queries 

required and so, the codebreaker has to choose the query which results in C(4) in the 

worst situation. The optimal query for the codebreaker is therefore bibjbk.         

4.2.2 The Devil’s Strategy for the Codemaker 

Since the mission of the codebreaker aims to minimize the number of queries to 

acquire a secret code, the codemaker tries to maximize the number of queries for the 

codebreaker if he decides to implement a devil’s strategy. Hence, the worst case for 

the codebreaker means that his opponent conducts a devil’s strategy (or called a worst 

response for the codebreaker) in each ply during the gaming process in order to 

maximize the number of queries. In the follow-up, a lemma is exhibited to 

demonstrate what is the worst response for the codebreaker if he encounters a 3×h AB 

game, where h ≤ n. 

Lemma 6. For a 3×h AB game, where 11 ≤ h ≤ n, the codebreaker will require a 
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maximum number of queries to get the code while the codemaker 

answers [0, 0] after the codebreaker’s query. 

Proof. From Lemma 5, it is obvious that the codebreaker must choose bibjbk as a 

query for a 3×h AB game. After the codebreaker makes the optimal query, nine 

substates will be formed. These substates are C[0,0], C[0,1], C[1,0], C[0,2], C[1,1], C[2,0], 

C[0,3], C[1,2], and C[3,0] respectively. C[0,0] dominates C[0,1], C[1,0], C[0,2], C[1,1], C[2,0], 

C[0,3], C[1,2], and C[3,0] in accordance with the result of Lemma 3. In other words, C[0,0] 

is the hardest substate among the nine ones. Conclusively, the codemaker must 

response [0, 0] as his worst response and this will result in the worst case for the 

codebreaker because of the maximum number of queries. The proof is therefore 

finished.                                                             

4.3 An Illustrative Example of the Pessimistic Situation 

In order to clarify the key idea of the pessimistic situation (worst case) of 3×n AB 

games we have discussed above, a 3×20 AB game, which is a 3×n AB game while n = 

20, is taken as an illustrative example. The scenario is shown in Figure 14. Suppose 

that the set of symbols is S = {c0, c1, …, c19}. In the first ply, the codebreaker makes 

the first query, c0c1c2, and the codemaker offers [0, 0] as the first response which is 

the worst-case response. Thus, the 3×20 AB game reduces to a 3×h AB game, where 

h = 17. The similar operations proceed at the second and third queries. After the third 

query and third response, the original 3×20 AB game reduces to a 3×11 AB game. 

The minimum number of queries can not be obtained easily with the use of analyses 

when h ≤ 11 because of the irregular behavior. Hence, a branch-and-bound search 

algorithm, which has been proposed in Chapter 2, is applied to find an optimal 

strategy for smaller h. 
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Figure 14. The scenario of the pessimistic situation of a 3×20 AB game 

4.4 Chapter Conclusion 

From the above discussions, the optimal query for the codebreaker and the 

adversary response for the codemaker, which refers to the worst case for the 

codebreaker as well, are eventually obtained with the consideration of the special state 

C*. In the follow-up, all results mentioned above will be concluded to derive a 

theorem. 

Theorem 2. For a 3×n AB game, the minimum number of queries for the 

codebreaker in the worst case is 

⎣ ⎦
( )⎣ ⎦⎩

⎨
⎧

≥++
≤≤+
.8if,331

73if,33
nn

nn
 

Proof. At the beginning of a 3×n AB game, the n symbols are not used and then all 

secret codes are all equivalent. As a result, a secret code is chosen randomly as the 

first query for the codebreaker. Nine substates are therefore produced and [0, 0] is 

taken as an adversary response according to Lemma 6. Afterwards, C[0,0], which 

results from the first response, matches the attribution of the special state C* described 

in Lemma 5. Thus, Lemma 5 can be applied to this state. We find that the situations 
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mentioned in Lemma 5 and Lemma 6 will appear alternately in the following gaming 

process. So we have the following recurrence. 

( ) ( ) .11when,13 >+−= nnTnT  

Because of the irregular behavior of a 3×n AB game with a smaller value of n, its 

minimum number of queries can be obtained with the use of a branch-and-bound 

search algorithm, which originates from Chapter 2, when n ≤ 11. After the use of 

computer programs written with this approach, the minimum numbers of queries 

required for the codebreaker in the worst case are obtained in several hours and they 

are 4, 4, 4, 5, 5, 6, 6, 6, and 7 respectively when n = 3, 4, 5, 6, 7, 8, 9, 10, and 11. For 

example, an optimal strategy for 3×7 AB game is considered with S = {0, 1, 2, 3, 4, 5, 

6}. If the codemaker takes 165 as a secret code, a gaming process in the worst case 

will be as follows: 012, [0, 1], 023, [0, 0], 041, [0, 1], 156, [1, 2], 165, [3, 0]. In other 

words, the codebreaker requires 5 queries to identify 165 while playing the worst-case 

optimal strategy. 

We derive the above recurrence and conclude with the results of smaller values of 

n. Hence, the closed form of the formula is exhibited as follows. 
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This completes the proof.                                               

Partial results of 3×n AB games, 3 ≤ n ≤ 16, are summarized in Table 12. As 3×n 

AB games have been solved successfully, a natural generalization is to explore the 

techniques for m×n AB games, where m ≥ 4. This problem remains open. 

Table 12. The minimum number of queries for 3×n AB games in the worst case 

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# of queries 4 4 4 5 5 6 6 6 7 7 7 8 8 8 
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Chapter 5                     

Optimization Algorithm and 

Verification Algorithm 

This chapter introduces two algorithms, called the two-phase optimization 

algorithm (TPOA) and pigeonhole-principle-based verification algorithm (PPV) to 

investigate the game, AB game with an unreliable response. TPOA was proposed by 

us in [17] and was proved to be an effective approximate algorithm for deductive 

games. PPV is modified slightly from the pigeonhole-principle-based fast 

backtracking algorithm in [37], which was also demonstrated by us. Section 5.1 gives 

a comprehensive introduction for our problems while some notations are redefined 

here to match the properties of the handled problem. Section 5.2 provides an 

introduction to TPOA and its performance. In Section 5.2.3, PPV is illustrated and the 

verified results are also shown. Section 5.4 contains the summary of our remarks. 

5.1 Introduction 

In this chapter, a variant of AB game, which is called AB game with an 

unreliable response, is presented. The game is the same as 4×10 AB game in addition 

to the concept of fault tolerance added to the variant. In other words, there is an 
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additional rule in the game ⎯ the codemaker is allowed to give at most a wrong 

response. For example, it is a wrong response if the codemaker answers [1, 0] instead 

of [1, 2] if the codemaker chooses “2134” as a secret code and the codebreaker makes 

a query “0123”. Furthermore, the termination criterion of the game is modified in 

order to fit in with the area of fault tolerance. That is, the game is over if there is only 

one eligible code now. In short, it is not necessary for the codebreaker to figure out 

the secret code but to acquire it in his mind. 

AB game with an unreliable response has ever been studies by us [37]. That 

results show that the upper bound of the required number of queries in this game is 9 

while the lower bound of it is 8. Unfortunately, the two bounds are not the same and 

then, two more effective algorithms will be exhibited in this chapter to decide the 

exact bound of it. 

 〈{0, 1, 2}, {}〉 

g1,2 = 1 

〈{0}, {1, 2}〉

g2,1 = 0 

〈{1}, {0, 2}〉

g2,2 = 1 

〈{2}, {0, 1}〉 

g2,3 = 2 

〈{}, {0}〉 〈{0}, {}〉 〈{}, {0, 1, 2}〉 

g3,2 = 1 

〈{}, {0, 1}〉 

g3,1 = 0 

〈{}, {1, 2}〉

g 3,2 = 1 

〈{1}, {}〉 〈{}, {0, 1, 2}〉 

g3,2 = 1 

〈{ 2}, {}〉 〈{}, {2}〉

〈{}, {0}〉 〈{}, {1}〉 〈{}, {2}〉 〈{}, {0}〉 〈{}, {1}〉 〈{}, {2}〉 〈{}, {0}〉 〈{}, {1}〉 〈{}, {1}〉 〈{}, {2}〉

< = > 

< = > < = > < = > 

< = > < = > = > = > 

 

Figure 15. A game tree for the 1×3 game with an unreliable response 

In order to clarify the problem and our proposed methods precisely, here we 

redefine some notations, which may have been defined in Chapter 1, to match the 

properties of AB game with an unreliable response. Consequently, a simple number 
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guessing game, denoted 1×n games with an unreliable response, is taken as an 

illustrative example to explain these new notations. In the 1×n games with an 

unreliable response, the codemaker chooses a secret code c, c = {0, 1, 2, …, n − 1}. 

After each query g made by the codebreaker, the codemaker gives him a response r, r 

= {<, =, >}, i.e., they stand for g < s, g = s, and g > s. The codemaker is allowed to 

give at most a wrong response in this game. The goal of the game is to obtain the 

secret code by using as few queries as possible. We can represent the gaming process 

as game-tree search. For instance, a game tree for the 1×3 game with an unreliable 

response consisting of internal nodes and leaves is shown in Figure 15. 

Definition 15. The state ( ) ( )10 , ii CC  consists of two sets, which are composed of 

eligible codes after the codebreaker makes the i-th query. The first set 

 is the set of secret codes which satisfy all previous responses and 

 represents the set of secret codes which satisfy all but one of the 

previous responses. For example, the root in 

( )0
iC

( )1
iC

Figure 15 is { } { },2,1,0 , 

which indicates that the elements in ( )0
0C  are 0, 1, and 2 while  is 

an empty set. 

( )1
0C

Definition 16. A weight, ( ) ( )( )10 , ii CC , is a couple of natural numbers. The first 

number is the size of the set ( )0
iC  and the second number is the size of 

the set . For instance, the weight of the root in ( )1
iC Figure 15 is (3, 0). 

Definition 17. The query gi,j made by the codebreaker means that the query is the j-th 

choice among all valid queries with respect to the current state and 
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(i−1) queries have been made previously. In Figure 15, “g3,2 = 1” 

means that it is the third query and the query is 1. 

Definition 18. There are 14 legal responses in AB game. After the codebreaker makes 

the (i+1)-th query and the (i+1)-th response offered by the codemaker 

is j, this query will divide each set of the current state ( ) ( )10 , ii CC  into 

14 subsets, ( ) ( ) 14,,2,1,, 1
,1

0
,1 K=++ jRR jiji . In other words, 

 and . ( ) ( )014

1

0
,1 ij ji CR =

= +U ( ) ( )114

1

1
,1 ij ji CR =

= +U

Definition 19. A final state is the state which is ( ) ( )10 , ii CC  and ( ) ( ) 110 =+ ii CC . In 

other words, only one eligible code remains in the final state and the 

game is over. 

From the above definitions, the accurate relation of the states in each ply can be 

derived. Suppose that the codemaker offers j as the (i+1)-th response after the (i+1)-th 

query. The codebreaker has to consider whether the response j is correct or not. Hence, 

there are two possible cases discussed below. 

 If the response is correct, the states we have to consider now are therefore 

 and . ( )0
,1 jiR +

( )1
,1 jiR +

 If the response is wrong, we need to think of this state, . ( )U
jpp

piR
≠≤≤
+

,141

0
,1

Before the game starts, we know that ( )0
0C  is the set that contains all valid secret 

codes and . From the two discussed cases, we have the following relations. ( ) φ=1
0C

( ) ( )0
,1

0
1 jii RC ++ = , 

( ) ( ) ( )
⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
=

≠≤≤
+++ UU

jpp
pijii RRC

,141

0
,1

1
,1

1
1  
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During the gaming process, the secret codes, which dissatisfy the previous 

responses just one time, will be moved from ( )0
iC  to ( )1

iC . If the secret codes in ( )1
iC  

dissatisfy a response again in the future, we do not have to consider these codes in the 

following plies. 

5.2 Two-Phase Optimization Algorithm 

The two-phase optimization algorithm (TPOA) was originally proposed by us to 

solve Mastermind [17]. It is an approximate algorithm and is able to discover results 

with higher quality. TPOA can also be thought as a general improver for heuristic 

strategies. That is, given a heuristic, TPOA has higher chance to obtain results better 

than those obtained by the heuristic. Moreover, it sometimes can achieve near-optimal 

results that are difficult to find by the given heuristic. 

In this section, we will attempt to apply TPOA to discover the upper bound of the 

number of queries for AB game with an unreliable response. We first review the 

properties of TPOA and the hashing collision group that is used in TPOA. Second, a 

well-designed hashing function and the heuristic of evaluation are provided. Finally, 

TPOA is utilized to address the game. 

5.2.1 The Structure of TPOA 

The search tree of TPOA, abbreviated to TPOA tree, is divided into two phases, 

exploration and exploitation. The objective of exploration phase is to discover 

promising partial solutions; on the other hand, the exploitation phase is to choose the 

way that leads each of the partial solution to a “best” complete solution. Two 

parameters, the branching factor k and the exploration depth d, are used to decide 

how large the search space TPOA intends to explore. That is, the parameters 

determine how many potential (promising) solutions that TPOA will exploit. 
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We [17] have presented two versions of TPOA, which are TPOA+ (k, d) and 

TPOA*(k, d), in the previous study. Because a larger search space may be required to 

get a better upper bound of the game, only TPOA+ (k, d) is adopted to investigate our 

problem. TPOA+ (k, d) indicates TPOA with a branching factor of k and an 

exploration depth of d. The TPOA+ (k, d) tree is shown in Figure 16. Given a TPOA 

tree with an arbitrary height h, after level d the algorithm does a greedy search form 

that node on. The number of potential solutions exploited in a TPOA+ (k, d) tree will 

be kd. 

k

...

k

...

k

......

k

...

k

...

...

Exploration
Phase

...

... ... ...

Exploitation
Phase

...

d

h-d

...

 

Figure 16. The construction for TPOA+ (k, d) tree 

The structure and properties of TPOA are described now. Given parameters (k,d), 

the sketch of a recursive procedure for TPOA is shown in Figure 17. TPOA can be 

implemented by a modified exhaustive depth-first search on a TPOA tree. The main 

modification to depth-first search is that at each visited node in the exploration phase 

(within depth d), we consider only b branches and ignore other branches. In Figure 17, 

TPOA+ has a fixed b (= k) in the exploration phase, as shown in line 3. In the 
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exploitation phase, TPOA+ has a fixed b = 1 in line 4. Therefore, TPOA+(k, d) is able 

to prune a huge search space to a manageable size kd as shown in Figure 16. For AB 

game, since the 14 response nodes at each level should be kept, the search space is 

reduced to (14×k)d. 

 
1 
2 
3 
4 
5 
6 
7 

TPOA(k, d, b, c) { 
l = Current_level();  
If (c is a complete solution) Then Return c; 
If (l < d) Then b = k; 
        Else b = 1;                        
For (each move m ∈ M) 

i = Hash(m); 
HCGi ← HCGi ∪ {m}; 

// k, d: the given constants 
// get the current level in the TPOA tree 
 
// in the exploration phase 
// in the exploitation phase 
// M: the set of all next potential moves 
// classify possible next moves to HCGs by a 

hash function 

8 B = {HCGj | HCGj is the top b groups that could obtain promising results}; 
9 
10 
11 
12 
13 
14 
15 
16 
17 
 

For (each HCGi ∈ B) 
ci = Choose(HCGi); 
C = C ∪ { ci }; 

S ← ∅; 
For (each ci ∈ C) 

si = TPOA(k, d, b, ci); 
 S ← S ∪ { si }; 
 c = Max si ∈ S (eval(si)); 
 Return c; 
} 

// B: the set of b selected HCGs 
// ci: the selected representative for HCGi 
// C: the set of b representatives ci in B 
// S: the set of potential solutions from 

descendant nodes 
// recursively b-way search to find the best 

solution from descendant nodes 
// select the best solution discovered in S 
// return c to the parent node. 

Figure 17. The sketch of TPOA 

Given two constants (k, d), the time complexity of TPOA+ (k, d), in terms of 

number of nodes exploited, is kd (h − d), where h is the height of the game tree, i.e., 

the number of queries required in the worst case. This means that no matter how large 

an instance of problem is given, TPOA can always obtain an approximate result by 

appropriately selecting the parameters (k, d). Furthermore, depending on the 

execution time and space allowed, the value of parameters (k, d) can be increased to 

approach the optimal result. Now, the fundamental components of TPOA are 
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summarized as follows: 

 A constructive heuristic for the problem at hand 

 A hash function according to the heuristic 

 Two parameters (k, d) to decide how large the search space TPOA intends to 

explore 

5.2.2 Hash Collision Groups 

In TPOA, how to select the (most likely) best b next potential components is a 

critical issue. The problem can be effectively and efficiently solved by a clustering 

approach. TPOA performs clustering using a concept of hash collision groups [14], 

which are abbreviated to HCGs. The next potential components of solutions with 

similarity are clustered together in an HCG by a given hash function to the problem at 

hand. That is, the potential components with the same hash value will be clustered 

together. Section 5.2.3 will give detailed examples of how the clustering mechanism 

works. Properties of HCGs are now described. Figure 18 illustrates the relation 

between HCGs and equivalent classes in a search space of next potential components. 

There are several advantages of using HCGs in TPOA. The important properties of 

HCGs include: 

 For two components in the same HCG, they are most likely equivalent. On 

the other hand, for two equivalent components, they are definitely in the 

same HCG. 

 Given a hash function, it is efficient to obtain the b best HCGs. 

 Without losing the generality, an arbitrary component can be chosen to 

represent its HCG. 

Therefore, TPOA is able to efficiently and effectively select the b “best” 

representatives among all next potential components. On the other point of view, if an 
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evaluation function is used in TPOA, each HCG can be regarded as a set of the next 

potential components which have a tie on the return value of the function. Note that 

most ties are equivalent but equivalent solutions will produce ties. 

Components 

Equivalent classes 

HCGs

 

Figure 18. The relation between HCGs and equivalent classes 

5.2.3 TPOA for AB game with an Unreliable Response 

In this section, TPOA will be applied to our problem, AB game with an 

unreliable response. Figure 19 shows the game tree by applying the TPOA to this 

problem. Among them, ( ) ( )1
,

0
, , jiji CC  is the j-th state, i.e., the j-th class (response), after 

the i-th query. And gi,j is the j-th among the k best codes chosen by the TPOA at the 

i-th query. 

According to the hashing function, which will be demonstrated in Section 5.2.4, 

all valid queries are categorized into several HCGs and the representative of each 

HCG is evaluated in order to select k best codes as the explored queries. The designed 

hashing function and the heuristic of evaluation are described in detail in the next 

subsection. 

In the beginning, the initial state is the root of the game tree in Figure 19, which 

means that there are totally 5040 queries satisfying all previous responses. Note that 

while the codebreaker takes the first query into account, TPOA chooses the k best 

codes, g1,1, g1,2, …, g1,k, to conduct this search. After that, there are 14 classes which 

have to be expanded since the codemaker has 14 legal responses. Then the 
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codebreaker selects k best queries to expand the game tree again after the first 

response is determined. The two steps take turns until the final state is met. At final 

state, the program backtracks to its parent node and expands other branches 

continuously. 

14 classes  

[4,0] 3,0] 2,2] [0,0] [ [2,1] [

• • • 

g2,1 g2,k g2,2 

k queries  

( )0
iC : the set of eligible  codes which satisfy all previous responses  
( )1
iC : the set of eligible  codes which satisfy all but one previous responses

 

• • • 

( ) ( )

14 classes 

• • • 

0 1
00 ,CC  

( ) ( )1
1,1

0
1,1 ,CC  ( ) ( )1

2,1
0
2,1 ,CC  ( ) ( )1

3,1
0
3,1 ,CC ( ) ( )1

4,1
0
4,1 ,CC ( ) ( )1

14,1
0
14,1 ,CC  

( ) ( )1
1,2

0
1,2 ,CC  ( ) ( )1

2,2
0
2,2 ,CC ( ) ( )1

14,2
0
14,2 ,CC

• • • 

• • • 

g1,1 g1,k g1,2 

k queries 

• • • 

• • • 
( ) ( )1

1,
0
1, , dd CC  ( ) ( )1

2,
0
2, , dd CC ( ) ( )1

14,
0
14, , dd CC

• • • 

• • • 

• • • 

• • • 

gd+1,1 

1 query 

gd+1, 1 gd+1 ,1 

1 query 1 query  

Exploration Phase  

Exploitation  Phase  
 

Figure 19. The game tree expanded by TPOA 
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5.2.4 The Hashing Function and the Heuristic of Evaluation 

Now, a hashing function is designed carefully and a simple heuristic proposed by 

Barteld [6] is utilized to cooperate with TPOA. Although the two methods are 

uncomplicated, they are adequate to solve our problem. 

Hashing function for TPOA: 

Suppose given a state, ( ) ( )10 , ii CC , let the sizes of the 14 response classes (states), 

which result from , after a query g be ( )0
iC ( ) ( ) ( ) ( )0

14,1
0

2,1
0

1,1
0 ,,, +++= iiig RRRS K  while the 

sizes of the 14 response classes (states) resulting from ( )1
iC , after a query g is 

( ) ( ) ( ) ( )1
14,1

1
2,1

1
1,1

1 ,,, +++= iiig RRRS K . Afterwards, the hash function sorts the original two 

sequences,  and , into nonincreasing sequences, ( )0
gS ( )1

gS ( )0
gS  and ( )1

gS , 

independently. The hash function is therefore defined as follows: 

( ) ( )( ) ( ) ( ) ,,, 1010
gggg SSSSHash =  

In other words, assume that two queries, g and p, are considered. If ( ) ( )00
pg SS =  and 

( ) ( )11
pg SS = , then the query g and the query p are classified into the same HCG. 

Remember that we also guarantee the fundamental properties of the designed 

hashing function that (1) for two components in the same HCG, they are most likely 

equivalent, and that (2) for two equivalent components, they are definitely in the same 

HCG. Therefore, we can arbitrarily choose a secret code to represent its HCG, rather 

than exhaustively explore all secret codes in the HCG, and obtain an approximate 

result. 

Heuristic of evaluation: 

In the previous analyses, the height of the game tree has to be minimized so as to 

obtain the optimal strategy for the game in the worst case. However, it is not intuitive 
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to determine the significance between the number of codes in ( )0
iC  and that of codes 

in . Hence, a simple and efficient heuristic, called “most-parts heuristic”, 

demonstrated by Barteld 

( )1
iC

[6] is used in TPOA. The most-parts heuristic focuses on the 

“breadth” the eligible secret codes can be spread. In other words, the more classes the 

eligible secret codes can occupy after a query, the more favorable this query is. 

Because a state in our problem has two sets, e.g., ( ) ( )10 , ii CC , the most-parts 

heuristic has to sum up the number of the nonzero numbers in  and that of 

nonzero numbers in  according to a query g. The higher the score is, the better 

the query is. For example, the query g is better than the query p if the numbers of 

parts caused by g and p are 24 and 18 respectively. 

( )0
gS

( )1
gS

5.2.5 Experiment Results of TPOA 

When our program based on TPOA was implemented and tested, we ran it on a 

dedicated PC equipped with an Intel Core 2 Duo CPU whose frequency is 3.16 GHz. 

In order to accelerate the running time of TPOA furthermore, another technique is 

implemented as well. That is, during the searching process, TPOA will terminate as 

soon as it has found a strategy, in which the minimum number of queries is 8 in the 

worst case. Thus, this may reduce the necessity to search all the possible pathways in 

the search space shown in Figure 19, and result in faster finish time. 

The results are shown in Table 13. Basically, the larger the values of k and d are, 

i.e., the larger the search space is, the fewer the number of queries required for the 

game is, and the longer the time for running the program is. However, the results in 

Table 13 do not always seem to show this trend. This is because by using the above 

speed-up technique, TPOA stops if a strategy with 8 queries required in the worst case 

is found. In other words, TPOA will stop more quickly if the order of the traversal 
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sequences of the k queries in each ply is decided carefully. In our program, the order 

of the traversal sequences is completely determined by the most-parts heuristic to 

choose the k best queries in each ply. From the results in Table 13, it reveals that the 

most-parts heuristic is quite outstanding because the running time is shorter when k = 

7 and d = 7. 

Table 13. The upper bound derived by our program 

k d The number of queries in the worst case Running time (Minutes) 
1 1 10 3.96 
2 6 10 21.60 
3 3 10 28.43 
5 4 9 319.47 
5 5 9 641.47 
7 7 8 13.87 

 

Note that the number of queries, whose value is 8, is obtained by our program 

when k = 7 and d = 7. This shows that the TPOA can efficiently obtain optimal (or 

near-optimal) results with a small k and d (compared to 5040 valid queries). Hence, 

we have the following Lemma 7 evidently. 

Lemma 7. For AB game with an unreliable response, there exists a strategy such that 

the number of queries required for the codebreaker to obtain the secret 

code is at most 8. 

We can regard Lemma 7 as an upper bound of this problem. In the following 

section, we demonstrate the pigeonhole-principle-based verification algorithm to 

prove that the lower bound of the game is also 8. 

5.3 Pigeonhole-principle-based Verification Algorithm 

In our previous study [37], we have proposed a pigeonhole-principle-based fast 

backtracking algorithm (PPBFB) to obtain the lower bound of our problem in about 5 
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days using an AMD Opteron 1.6GHz PC. Here, the concept of PPBFB will be 

reviewed first and then, the reductions of equivalent queries (Technique 3 in Section 

3.2.2.3) are also cooperated with PPBFB to accelerate the speed of the verification. 

The refined version of PPBFB is called pigeonhole-principle-based verification 

algorithm (PPV). Finally, the lower bound is also acquired by PPV in only 12.83 

minutes using an Intel Core 2 Duo 3.16 GHz PC. 

The concept of PPBFB is to conduct an exhaustive worst-first search. It rates the 

lower bound by making use of the extended pigeonhole principle proposed by us [18] 

and then backtracks as early as possible to save the search time. The refined version 

of PPBFB, PPV, is illustrated in Figure 20. The key idea of PPV is to consider the 

sizes of the two sets in the state when the search proceeds. The rectangles in Figure 20 

represent the states.  is the i-th possible choice among all secret codes made by 

the codebreaker at the p-th query. rp, max means the class which results in the most 

number of queries among 14 classes after the p-th query. qmax is the theoretical lower 

bound which means a fewest number of queries required to reach the final state, i.e., 

pig ,

{ } φ,c  or { }c,φ , from the current state and h is the lower bound we intend to 

verify. 

Theoretically, a search algorithm has to explore all valid 5040 secret codes at 

each query. However, in fact, PPV only need to explore 1 representative query at the 

first query, to expand 20 queries at the second query, and to expand 356.50 queries in 

average at the third query due to the equivalence property. For the codemaker, only 

the worst case among the 14 classes has to be expanded. The so-called “worst case” 

denotes the class which will result in the most number of queries needed by the 

codebreaker. 
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Figure 20. The sketch of the PPV algorithm 
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The extended pigeonhole principle [18] is employed to estimate the lower bounds 

of the number of queries needed among 14 classes. The idea of the estimations of 

lower bounds is similar to that proposed in Chapter 2. In other words, the actual 

number of queries needed is more than or equal to the most number, qmax, of lower 

bounds among 14 classes. Therefore, our verification program is not necessary to 

search the whole game tree. It can backtrack to the parent node to expand other 

branches if the condition holds: ( ) hqp ≥+ max , where we set h = 8. 

The main idea of the estimation of lower bounds by using the extended 

pigeonhole principle is that the query made by the codebreaker in each ply may divide 

the elements of the two sets in the current state evenly. Hence, this ideal strategy can 

minimize the height of subtree rooted in the current node. That is to say that there 

exists a “theoretical optimal” strategy for the codebreaker in the following queries 

such that all the elements of the two sets in each state may be divided evenly. The 

actual number of queries is thus more than or equal to the value of estimations. Note 

that we use the function, Get_lower_bound, to rate the lower bounds in Figure 20. 

The detailed calculation of the lower bounds, the entire algorithms, and other 

improvements can be found in [37][38]. Hence, the details are omitted here. 

After the careful implementation of our program based on PPV, The verification 

program was run on a dedicated PC equipped with an Intel Core 2 Duo 3.16 GHz 

CPU to verify the lower bound required for AB game with an unreliable response. If 

we set the value of h, which indicates the lower bound we want to verify, to 8, our 

program executed for about 12.83 minutes and the final output is “success!” finally. 

In other words, the minimum number of queries is at least 8 in the worst case 

without respect to any strategies used by the codebreaker. Note that the upper bound 

of this problem is obtained in Lemma 7 as well. Thus, we have the following theorem 

which shows that the lower bound as well as the exact bound of the game is 8. 
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Theorem 3. For AB game with an unreliable response, 8 queries are necessary and 

sufficient to identify a secret code in the worst case. 

5.4 Chapter Conclusion 

This chapter utilizes two advanced algorithms to address AB game with an 

unreliable response. The first one is two-phase optimization algorithm (TPOA). With 

the well-designed hashing function and the simple heuristic of evaluation, the results 

obtained by TPOA are better than those of the previous work [37]. In other words, 

TPOA is more effective and efficient. Note that the upper bound of the game is 

declined from 9 to 8 in this refined approach. 

On the other hand, another improvement, pigeonhole-principle-based verification 

algorithm (PPV), is modified from pigeonhole-principle-based fast backtracking 

algorithm (PPBFB). PPV uses equivalent properties to reduce the branching factors at 

the first three queries. Although the final outcome is the same as that in [37], the 

speed of PPV is faster than PPBFB due to the reductions of equivalent queries. 

Moreover, the lower bound provided by PPV is 8 as well. 

Fortunately, we have proved that the upper bound of the game matches the lower 

bound while its value is 8. Hence, the minimum number of queries for AB game with 

an unreliable response is 8. Furthermore, it may be interesting to deal with AB game 

with e unreliable responses, where e ≥ 2. 
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Chapter 6               

Conclusion and Future Work 

In this dissertation, some optimization approaches for deductive games and their 

variants are taken into account. Section 6.1 concludes with the proposed optimization 

algorithms and our contributions. Some future work is mentioned in Section 6.2. 

6.1 Concluding Remarks 

Two advanced algorithms and a reduction technique for deductive games are 

demonstrated in this study. Moreover, two promising algorithms, which are proposed 

before, with some modifications are introduced to solve our addressed problem as 

well. We summarize our main novel contributions: 

(1) A more efficient complete algorithm, which is called depth-first 

backtracking algorithm with branch-and-bound pruning (DBB) for 

Mastermind in the expected case, is introduced to take the place of 

traditional approaches and meanwhile, an admissible heuristic, which can 

be applied to various deductive games, is presented as well. From the 

experiments, DBB is significantly superior to the traditional algorithms and 

an alternative optimal strategy is also obtained finally. 

(2) To date, there have been no optimal expected-case strategies for AB game 

in formal literature since its appearance. Thus, a refined branch-and-bound 
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algorithm with speed-up techniques (RBB) is demonstrated to deal with this 

problem. A tactic for playing AB game optimally in the expected case is 

eventually attained by utilizing RBB and in addition, the corresponding 

expected number of queries, 26274/5040 ≈ 5.213, is derived. 

(3) A sophisticated method, called structural-reduction approach (SR), which 

aims at explaining the pessimistic situation in this game, is presented to 

investigate 3×n AB games. After careful theoretical analyses, optimal 

strategies for the codebreaker in the pessimistic situation are discovered. 

Furthermore, a worthwhile formula for calculating the optimal numbers of 

queries required for arbitrary values of n is derived and proven 

successfully. 

(4) Two algorithms, which are named as two-phase optimization algorithm 

(TPOA) and pigeonhole-principle-based verification algorithm (PPV), are 

surveyed for solving AB game with an unreliable response. The purpose of 

TPOA is to discover an upper bound of the required number of queries in 

this game while PPV aims at identifying a lower bound of it. Fortunately, 

experimental results show that the upper bound equals the lower bound and 

then, the exact bound of the number of queries needed, whose value is 8, is 

achieved. 

From the survey of related papers, it reveals that the search space of many games 

and optimization problems are often so huge that traditional search algorithms are not 

able to explore it efficiently. Of course, there were plenty of pruning techniques, 

which were proposed before. However, slight inaccuracy of the measures of these 

pruning techniques may usually lead to the poor results that are far from the optimum. 

In this study, our proposed search algorithms, which are replied upon the 

admissible heuristics, have contributed success to various deductive games. Note that 
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in general, the admissible heuristics can be regarded as a kind of theoretical pruning 

techniques since the pruning occurs but does not affect the correctness of search 

algorithms. In other words, the results of the search algorithms are accurate if the 

pruning techniques are based on theoretical analyses. Hence, it may be a trend to 

combine search algorithms with theoretical pruning for solving those complicated 

problems. 

On the other hand, other optimization problems such as coding theory, circuit 

testing, differential cryptanalysis, and additive search problem may also be solved by 

taking advantage of our demonstrated methods with modifications in the future. We 

hope that the research results may assist other scientists with the development of their 

concerned issues. 

6.2 Future Work 

There are still some open issues regarding our problem domain. The optimal 

strategies of deductive games with much higher dimensions, which are called m×n 

AB games while m ≥ 4, are still unknown. It is interesting to investigate them because 

they may become NP-complete problems or harder problems if the value of m is 

getting larger constantly. Then, the boundary value of m is significant as well. Besides 

the original versions of much higher dimensions, other variants of deductive games 

are also worth studying such as static deductive games or deductive games with 

multiple unreliable responses. From the progress of research, 3×n deductive games in 

the expected case and 4×n deductive games in the worst case may be solved 

completely in the near future. 

There are other important problems such as the Renyi-Ulam game and the 

counterfeit coin problem, whose styles are similar to deductive games. In fact, the 

Renyi-Ulam game has been widely surveyed in the fault-tolerance area and 
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meanwhile, the counterfeit coin problem has been discussed constantly in the 

information-theory area as well. However, there are still a lot of open issues about the 

two significant problems. These open questions are likewise worth studying in further 

detail for discovering their solutions. 
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Appendix A. Equivalence Transformations for 

AB Game at the Second Query 
The following equivalence transformations for the second query of AB game 

transform the 209 codes into their corresponding representatives. 

Table 14. Equivalence transformations 

Order Representative
Each 

query 
Equivalence transformations 

1 0123 - - 

0213 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

0321 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

1023 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541032
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1032
3210

P

2103 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542031
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2031
3210

P

2 0132 

3120 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543021
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3021
3210

P

3 4567 - - 

0312 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

1203 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542103
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2103
3210

P

1320 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543102
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3102
3210

P

2013 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541203
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1203
3210

P

2130 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543201
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3201
3210

P

3021 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541302
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1302
3210

P

4 0231 

3102 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542301
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2301
3210

P
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2301 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P
5 1032 

3210 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

1302 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542310
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P

2031 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541320
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P

2310 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

3012 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541230
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1230
3210

P
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9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2310
3210

P
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2014 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876543120
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

3120
3210

P

2430 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541320
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1320
3210

P

3041 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876542130
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2130
3210

P

3402 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876541230
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

1230
3210

P

4231 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540321
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0321
3210

P

  

4312 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

9876540231
9876543210

C ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

0231
3210

P
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Appendix B. Optimal Strategy for AB Game in 

the Expected Case 
Prior to introducing the optimal strategy of AB game, its representation will be 

illustrated first. The lower-case alphabets, a, b, c, …, m, n, represent the 14 responses 

(hints), as shown in Table 15. 

Table 15. The mapping between responses and representative letters 

Response Representative letter  Response Representative letter 

[4, 0] a  [1, 1] h 

[3, 0] b  [1, 0] i 

[2, 2] c  [0, 4] j 

[2, 1] d  [0, 3] k 

[2, 0] e  [0, 2] l 

[1, 3] f  [0, 1] m 

[1, 2] g  [0, 0] n 

 

Three kinds of tokens will appear in the strategy. The first kind is four-digit 

Arabic numerals, which means the query made by the codebreaker. The second one is 

lower-case letters mentioned above, which indicate the responses. The last kind is 

parentheses. The tokens in parentheses refer to the optimal tactic of the state. In other 

words, it is an optimal game tree of that state. The tactic is constructed with a 

recursive form and can be treated as a game tree. For example, suppose that a game 

tree depicted in Figure 21 is given. Then its corresponding representation will be 

“4872 ( j 7248 ( a ) f 4287 ( f 8274 ( a ) a ) a )”. Furthermore, it is easy to reconstruct 

the game tree from its representation with depth-first ordering. 
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j af

4872

7248 4287

8274

a

7248

a

a

f

{7248} {4287, 8274}

{8274}

4872 ( j 7248 ( a ) f 4287 ( f 8274 ( a ) a ) a )

{4287, 4872, 7248, 8274}

4287

8274

4872

 

Figure 21. The transformation between the game tree and its corresponding 
representation 

The derived optimal strategy of AB game in the average case is shown partially 

as follows due to space restrictions. In order to clarify the levels, we use an indent 

structure. We have established a website (http://www.csie.ntnu.edu.tw/~linss/ 

ABgame/optimal_strategy.html) that includes the full text of the optimal strategy. 

 

0123 ( n 4567 ( l 5689 ( l 7498 ( j 8974 ( c 9874 ( a )  

                                           a )  

                                  f 8794 ( f 9748 ( a )  

                                           a )  

                                  c 7894 ( f 7948 ( a )  

                                           j 9478 ( a )  
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                                           a )  

                                  a )  

                         k 6948 ( l 8795 ( c 7895 ( a )  

                                           f 9875 ( a )  

                                           a )  

                                  k 8495 ( l 9876 ( a )  

                                           j 9854 ( a )  

                                           h 7896 ( a )  

                                           e 8796 ( a )  

                                           a )  

                                  j 8496 ( a )  

                                  h 8975 ( j 9758 ( a )  

                                           a )  

                                  g 8954 ( j 9845 ( a )  

                                           f 9458 ( a )  

                                           e 8976 ( a )  

                                           a )  

                                  f 6894 ( f 9846 ( a )  

                                           a )  

                                  e 7958 ( a )  

                                  d 6798 ( l 8945 ( a )  

101 



 

                                           a )  

                                  c 6498 ( j 8946 ( a )  

                                           a )  

                                  b 6978 ( a )  

                                  a ) 

 

// The full text of the optimal strategy is included at http://www.csie.ntnu.edu.tw/ 

~linss/ABgame/optimal_strategy.html. 
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