BB L SR S S

BERE L £

REBARFEEARHE FFE 22 R BN
The Design and Analysis of Optimal Algorithms

for Deductive Games with Higher Dimensions



&
MEF NGRS G FAEH IR R > F IR LR DR AR AR S
% S B RE AE (deductive game) i o b 4e S A8 T2 34 (coding theory) ~ 7 B PR
(circuit testing) ~ % #5 % kupk f#(differential cryptanalysis) ~ *#+4c if i+ 3% (additive
search problem)% A 82 - 33 2. > A FEGFA R T 7 - H s ppRAp 8 R
RNRfEFE A LB FPF B R g R 2R R

it ER O FFIAHFERANE T A4 - Mastermind &2 AB
game( f£ % Bulls and Cow) & &3 % s AR5k AL > v &R Bt 8 e
Donald E. Knuth %1976 £v35 < ¢ £ St = ﬁj:i 4-¥+ Mastermind wAp BEF= 7 o
A P o AP - k5|32 T 4 (theoretical-pruning) end i 1L 3 2 B R H
B KRS AR A

BAEF DU AT R FIARRAPRRES AP E T AT &

(1) 2k - B >t & R & S H B 4L 0 admissible heuristic o fe pF > 54
™2 4% ot admissible heuristic > #& &1 - B { F s auE B2 ok 2L
Mastermind » & {s 7= 17 3] Mastermind 7T 35,k J T g i {1k o

(2) 4% ABgame - 2 i3k - B T H e #4% & U2 (pruning algorithm) %
FR U o (T IEE > B {8 F T ABgame f-T 3k R T g if ok T
H TP ks 5.213 -

(3) AP 44 A AT 3xn AB games sk i L vE I A M A 3T o B
SN A e ol - BB ECH KRR g i R e Biez N o

(4) APy - B AB game s3] 0 LG FF- 4T B2 AB game o

Bor i R H B @GRk s 8

Métx t ABgame ~ A & B 22 ~ m & A P AL - 5 A A~ Mastermind ~ B i X

VROER T RTINS FTR



st

EREF TR AR IFINF Y 2R figw E Pk o SRR Sy H R
EE R LR e g o RAME LG L UFEOHR
AP CRE RN I F L e FARHEF R R U PR R R

PILET B E > L 52 B A RE Az 2 )

BHT L RFaakg P R I RIKEGFB R AP T
FHEMF S Hg  HE AP L S b bk R BRI TR L ko @
BT EHY F T LART R L o ¥ by g IL3cdt ~ § 2 & 1k pdp
ARFCH e 7 E T R R R R R Wik R e e ¥ 4
TR L G KR A L A e R BT A HE T RF T PR

B AF 2 pRg iRy .

BHAFFTHEY T3 FRAF S ] P RA R 2 AR L
MEESZTFAFT P RESE S LIRS o RS RHEH G B

g b g v FEaL OfE 0 R i "E AR °

&iiﬁ%{@ﬁﬂﬁi}E%@%%ﬁi%’%ﬁ?u%u%ﬂﬁpf’
FOFP) R FERHT o A B A X R E A L kR R e

BFAPFLFLBRALRIFORE > P SFRAFEY A hh i oo

Hu a5 AR HATTRES S A - HE B BT

},é.gﬁ?'u.“Lq\]‘anTi/i HFp e Ak A ig‘FNbiﬁ%"‘ °



The Design and Analysis of Optimal Algorithms for Deductive Games

with Higher Dimensions

A dissertation proposed

by
Li-Te Huang
to
the Department of Computer Science
and Information Engineering

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

National Taiwan Normal University
Taipei, Taiwan, R.O.C.

2009



Abstract

With the increasing exploration of optimization problems in numerous fields,
many critical issues, such as coding theory, circuit testing, differential cryptanalysis,
and additive search problem, can be modeled as deductive games. In other words, the
research of these games has led to the hope that the fruitful solutions of problems in
related areas may be obtained. Thus, it becomes urgent to develop efficient
mechanisms for deductive games.

Over the last few decades, considerable concern has arisen in solving a number of
deductive games. Mastermind and AB game (or “Bulls and Cows”), which were
introduced by the famous scientist, Donald E. Knuth, in 1976, are the most
well-known ones. In this dissertation, we aim to present a series of theoretical-pruning

optimization approaches and mathematical proofs to solve both of the two.

As a result of applying these novel methods, the following new results have been

obtained.

(1) An admissible heuristic for deductive games is presented. Meanwhile, a
more efficient algorithm based on it is introduced to solve Mastermind and
an alternative optimal strategy in the expected case is gained eventually.

(2) A refined pruning algorithm is demonstrated to address AB game.
Fortunately, an optimal strategy for AB game in the expected case is
acquired finally and its expected number of queries is 5.213.

(3) Analyses of playing 3xn AB games in the worst case optimally are
conducted. Furthermore, a worthwhile formula for calculating the optimal
numbers of queries in the worst case is derived successfully.

(4) A variation of AB game, AB game with an unreliable response, is surveyed.
Finally, an exact bound of the number of queries for the game is achieved

and its value is 8.



Keywords: AB game, branch-and-bound, deductive game, game tree, Mastermind,

optimal strategy, search algorithm, theoretical pruning, unreliable response.
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Chapter 1

Introduction

1.1 Deductive Games

Deductive games are zero-sum games of imperfect information. Two opponents
are involved in deductive games. One opponent serves as a codemaker, who thinks of
a secret code in mind, and the other is a codebreaker, who has to acquire the code by
making queries iteratively. Each query is a guess for a possible secret code. After a
query is made in each ply, the codemaker will give a response. The goal of the
codebreaker is to identify the code in the fewest queries in accordance with previous
information. The game proceeds in turn until the secret code is eventually obtained by
the codebreaker. The original versions of deductive games, Mastermind and AB game
(or “Bulls and Cows”), were first introduced by the famous scientist, Donald E. Knuth,
in 1976 [45]. Detailed descriptions and categories of deductive games will be

introduced in the follow-up paragraphs.

1.1.1 Discussed Categories of Deductive Games

Generally speaking, an mxn deductive game means that each possible secret code
in the game is composed of m digits while every digit has n possibilities (symbols).

Without loss of generality, the set of these n symbols is defined as S= {0, 1, 2, ..., n —

1}. Suppose that the codemaker has a secret code Cc=cCcC,...C, in mind and the

m

1



codebreaker makes a query ¢=9,9,...9,, where ¢;,d;€S,Vi,j. Then, the

codemaker will give a response [X, Y], where X and Yy are defined as follows.

B Xx= |{| G = gi}|,Vi =1,...,m. Thus, X means the number of symbols which

appear in both ¢ and g and meanwhile, every symbol occupies the same
position in both ¢ and g.

" y= ?zomin(pj,qj)—x , where p; =|{i G = J}| and Q, =|{i g = J}| In
other words, Yy represents the number of symbols which occur in both ¢ and g
but the positions of these symbols in ¢ and g do not match.

Note that for convenience, [X, Y] is called XAyB as well. In this notation, the
corresponding part can be omitted if X or y equal to 0. For instance, we can say 1A1B
instead of [1, 1] while [0, 1] is also called 0A1B or 1B simply. A deductive game has
ended if the codebreaker figures out the secret code, i.e., a response [m, 0] is received
by the codebreaker. Besides the above definitions, there is one additional
characteristic to distinguish two families of deductive games. That is whether repeated
symbols are allowed in each secret code or not. One of the two is the family of
Mastermind, in which repeated symbols are permitted in a secret code. The other is
the family of AB game, in which all symbols within a code are distinct. The following
subsection will offer additional introductions to the two families of deductive games

and one of their variants.

1.1.1.1 The Family of Mastermind

In this kind of deductive games, a symbol may appear several times within a
secret code. The most popular version of Mastermind is 4x6 Mastermind, which is
well-known around the world since its appearance in 1972. A secret code in it consists

of 4 digits with 6 possible symbols, e.g., 0, 1, ..., 5. This is a topic that will be first



investigated in the study. In order to simplify its name, 4x6 Mastermind is simply
called Mastermind in the later discussion if we do not stress its dimension. Figure 1

shows the screenshot of 4x6 Mastermind, which was captured from [23].

Figure 1. The screenshot of 4x6 Mastermind
1.1.1.2 The Family of AB game

The kind of deductive games is an ancient game that may date back a century or
more and Mastermind also resembles it. The family of AB game is innately the same
as that of Mastermind except the distinct symbols in a code. 4x10 AB game is the
most common version and widespread in Asia and England. A secret code in it is
composed of 4 digits while there are 10 possible symbols, i.e. 0, 1, ..., 9, in each digit.
In this study, we focus on 4x10 AB game and a generalized version, 3xn AB games,
and for the sake of simplicity, AB game is usually referred to as 4x10 AB game if the
dimension is not mentioned. Figure 2 exhibits the screenshot of 4x10 AB game,

which was captured from [57].



Congratulations!

Mumber of tries: &
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Total score: 50

r

2695 WWWW 2 Bulls: 4, Cows: 0
7625 s WW % i Bulls: 2, Cows: 1
5612 v W%% 0 Bulls: 1, Cows: 2

4503 v % w0 Bulls: O, Cows: 1
4681 s W 20 Bulls: 1, Cowes: O

Figure 2. The screenshot of 4x10 AB game

1.1.1.3 Deductive Games with Unreliable Responses

In normal deductive games, the codemaker will always give a correct response
when the codebreaker makes a query. In order to fit in with the area of fault tolerance,
a variant model of deductive games, called deductive games with unreliable responses,
was first demonstrated by Huang et al. [38]. In other words, it is the same as the
original one but the codemaker is allowed to offer incorrect responses at most € times,
where the value of e is greater than zero. In [38], 4x6 Mastermind with an unreliable
response has been solved completely. In this dissertation, a harder problem, 4x10 AB
game with an unreliable response, will be considered and likewise, every code in it
has 4 digits with 10 possible symbols. We call it AB game with an unreliable response

for short as well.

1.1.2 Search Space of Discussed Deductive Games

Before the addressed deductive games are discussed, solid analyses of search



space for these problems are necessary. Assume that an mxn deductive game is taken

into account. The numbers of all valid responses given by the codemaker and all

possible queries the codebreaker can make are offered here.

Note that there exists 1+2+3+---+(m+1)=(m+1)m+2)/2 combinations

of the values of X and y for m digits but the response [m — 1, 1] is impossible.

__m(m+3)

(m+1)m+2)
2

Therefore, there are at most legal responses. In

other words, the codebreaker may receive one of these responses which are
[m, 0], [ m—1,0],[m—2,2],[m—=2,1],[m—2,0], ..., [m — i, i], ..., [m — 1,
01, ..., [0, m], ..., [0, O].

All possible guesses the codebreaker can query are same as all valid secret

codes the codemaker can choose. Obviously, there are n™ secret codes in

the family of Mastermind and n}/(n—m) codes in the family of AB game.

Thus, so are their numbers of all possible queries.

Table 1 summarizes the search space of every deductive games discussed in this

study with the use of above formulas. Note that the number of pessimistic queries for

these games means the worst-case number of queries required for the codebreaker. In

the column “# of pessimistic queries”, each value from top to down is referenced from

[45], [18], Chapter 4, and Chapter 5 of this study respectively.

Table 1. The search space of discussed deductive games

. ) # of legal | Pessimistic # of
deductive games # of valid secret codes . Search space
responses queries
4x6 Mastermind 6* =1296 14 5 (1296x14)° ~ 10*'
4x10 AB game 10Y/(10 - 4) = 5040 14 7 (5040x14)” ~ 10*
3x .3 2 3 2 (n+1)/3 43
nABgame | nY(n-3)=n’-3n%+2n 9 [(n+1)/3]+3 |(9n® —27n+18n
4x10 AB game with
-8 10Y/(10 — 4) = 5040 14 8 (5040x14)* ~ 10%
an unreliable response




1.2 The Classification of Proposed Algorithms

In order to investigate the above games, several kinds of algorithms have been
proposed. We therefore give a comprehensive introduction to their classification and

major properties.
1.2.1 Computer-aided Proof

A computer-aided proof (or called computer-assisted proof, computational
method) is a paradigm of proofs, which has been partially or fully generated by
computer. Most computer-aided proofs are implemented with numerous case-by-case
exhaustion for desired problems. Sometimes, some theorems seem concise in nature
whereas their mathematical proofs rely on heavy analyses of different configurations
[69]. Thus, the computing power of computers is necessary to do an exhaustive
verification.

In fact, not only the use of computers can make the analyses of complicated
algorithms fun but also the results may not be gained in a reasonable time without the
assistance of computers [65][66]. Historically, there were many significant results
proven by this approach such as the four-color theorem [4][5], the Kepler conjecture

[32], Connect-Four [1][2], Connect-Five [3], checkers [63] and so on.

1.2.2 Branch-and-bound Algorithm

The branch-and-bound algorithm was first demonstrated by Land and Doig in
1960 [49] and its appearance is common in the modern textbooks as well [52].
Another similar algorithm is named as A™ search [62] and previous study reveals that
the two types of algorithms are essentially identical and they only differ at the
interpretation level [48]. Thus, the two terms will be alternatively used below

according to the concept we intend to express.



In general, the branch-and-bound algorithm is a general search algorithm for
finding optimal solutions of various optimization problems. The key idea is that if a
branch is encountered in the search process, the algorithm decides whether the branch
should be cut or not in accordance with the value of the admissible heuristic (or called
bound function), which represents a lower bound to the goal.

Good admissible heuristics of a certain problem are usually hard to discover, but
are just the core of a branch-and-bound algorithm. Hence, they play significant roles
in this kind of methods. On the other hand, admissible heuristics are worth
discovering because they also have desirable properties in various search algorithms

[56].
1.2.3 Approximate algorithm

Approximate algorithms are developed to solve optimization problems in practice.
They sacrifice the guarantee of finding optimal solutions for the sake of getting
feasible solutions in a significantly reduced amount of time. Approximate methods are
usually distinguished between constructive methods and local search methods. The
former ones generate solutions from scratch by adding components (or called moves)
until a solution is complete. On the other hand, the latter ones start from some initial
solution and iteratively try to replace the current solution by a better one. However,
both methods may easily be trapped into local optima.

To escape from local optima, a new kind of approximate algorithms has emerged
in the past three decades. These algorithms try to combine basic heuristic methods in
higher-level framework aimed at efficiently and effectively exploring a search space.
Examples of these algorithms based on local search methods are genetic algorithms
[36], simulated annealing [44], tabu search [26][27], ant colony optimization [22], and

iterated greedy [60]. On the other hand, examples of algorithms based on constructive



methods are iterative sampling [33], HBSS [13], sampling and clustering [19],
selective-sampling simulation [10], adaptive sampling [41][61], GRASP [24][55],
block search [35], and Monte-Carlo Tree Search [20]. The main difference between

these algorithms is the mechanisms used to guide the tree search.

1.2.4 Theoretical pruning

Given a huge search space of a problem, the forward pruning is a common
scheme if a search algorithm is adopted to handle this problem. It is able to prune
some useless branches in the search to speed up the work. Recently, some new
forward-pruning mechanisms are presented such as null move [21], multi-cut [11],
and AEL pruning [34]. Although these new approaches can acquire better results in
less computation time, they still fail to guarantee the optimal outcomes. Therefore, the
mechanism of the theoretical pruning, whose key idea is to conduct a forward pruning
based on optimal analyses, is suggested in the research. Since this kind of pruning
certified by optimal analyses omits the expansion of some branches, it can not only
accelerate the speed of searching but also ensure the acquisition of best results.

Table 2 lists the classification of all algorithms appearing in the study and each
algorithm is marked with the corresponding classification. The column “Position”
shows in which chapter each algorithm is presented.

Table 2. The classification of proposed algorithms

) Computer-aided Mathematical ) Theoretical .

Algorithms Branch and bound Approximate . Position
proof proof pruning

DBB \ \ \ Chapter 2
RBB \ \ \ Chapter 3
SR \ Chapter 4
TPOA \ Chapter 5
PPV \ \ \ Chapter 5




1.3 Preliminaries of Related Work

Mastermind and AB game, whose dimensions are 4x6 and 4x10 respectively, are
widely known throughout the world. The former is popular in America while the later,
which is called “Bulls and Cows” in some places as well, is widespread in England
and Asia. AB game is an ancient game and Mastermind, which resembles AB game,
was invented in 1970. They were first stressed by the notable scientist, Knuth [45]. A
strategy of Mastermind for minimizing the number of queries was also proposed by
him and has achieved the optimal result in the worst case, where the maximum
number of queries needed is 5. Meanwhile, its number of queries in the expected case
is 4.478. Plenty of studies on finding better strategies of Mastermind in the expected
case arose from then on. Irving [39], Norvig [54], and Neuwirth [53] enhanced the
results, in which the bounds of expected numbers of queries are 4.369, 4.47, and
4.364, respectively. Flood [25], Ko and Teng [46] thus defined general notations for
mxn deductive games and proposed some improved strategies. Eventually, Koyama
and Lai [47] introduced an optimal strategy in the expected case for it in 1993 while
the expected number of queries is about 4.34. Rosu [59] also proposed a faster
algorithm and obtained the optimal strategy as well. A thorough introduction to
Mastermind and a new heuristic approach were demonstrated by Barteld [6].

Chen et al. [16] demonstrated 2xn Mastermind and solved it completely with the
graph-partition approach and Goddard [28] also obtained the same results for this
problem independently. On the other hand, there is another variation called static
Mastermind, where the codebreaker has to make all queries at once and has to
uniquely decide the secret code after receiving all answers. Greenwell [31] derived
some results of the game for small cases and provided some upper bounds of the
game in a few cases. Afterwards, Goddard [29] completely solve static mastermind
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for at most 3 digits, and for some cases of 4 digits. Huang et al. [38] also presented a
variation, called Mastermind with an unreliable response, and obtained an optimal
strategy for it. In 2006 the Mastermind Satisfiability Problem has been shown to be
NP-complete [70]. Jager and Peczarski [40] investigated the generalized Mastermind
and used the computer aided methods and mathematical proofs to decide the optimal
number of queries in the worst case for 3xn Mastermind and to derive the lower and
upper bounds of the numbers of queries for 4xn Mastermind, mx2 Mastermind, and
mxn Mastermind. Goodrich [30] studied the algorithmic complexity of Mastermind
with single-dimensional responses, which means that there is only one number (the
value of X) in each response.

Much more efficient meta-heuristic algorithms, which produced comparable
results with less running time in various dimensions of Mastermind, were investigated
by Bernier et al. [9], Bento et al. [7], Kalisker and Camens [43], Singley [68],
Ugurdag et al. [73], and Berghman et al. [8]. Although these methods are often
efficient and effective, they are not able to attain the optimal strategy of Mastermind.
Chen et al. [17] described a systematic method to address 4x6 Mastermind and it can
achieve a near-optimal result in the expected case.

There are some scientists that emphasized the efficiency of acquiring the good
results, such as Shapiro [67], Swaszek [71], Rosu [59], Temporel and Kovacs [72].
However, the qualities of strategies they discovered may usually be incomparable
with those of other carefully considered approaches due to quick selections of queries.

Compared to 4x6 Mastermind, there is less research on 4x10 AB game because
of its huge search space although 4x10 AB game has longer history. Chen et al. [15]
introduced 2xn AB game, and found the optimal number of queries in both the worst
and the expected cases. Moreover, Chen et al. [18] first proved the exact number of

queries in the worst case to identify a secret code for 4x10 AB game and showed that
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the number is 7.

Merelo et al. [51] indicated that many critical issues, such as coding theory,
circuit testing, differential cryptanalysis, and additive search problem, can be modeled
as deductive games. In other words, the research of these games has led to the hope

that the fruitful solutions of problems in related areas may be obtained.

1.4 Research History of Deductive Games

Table 3 has concluded with a series of significant progressive and conclusive results
of deductive games since Knuth [45] stressed two famous deductive games,
Mastermind and AB game, in 1976. Progressive results mean that the research of the
handled problem has acquired better results but it may be refined again in the future.
Conclusive results represent that a complete conclusion (often refers to as an optimal
strategy) is obtained via the stressed problem.

The field “Problem” is the game that paper dealt with. If it writes “Several
dimensions of Mastermind”, then there are several versions of Mastermind surveyed
in that paper. We can observe that many variations of deductive games are included as
well. Moreover, the field “Case” indicates which condition the addressed problem is
considered. The terms, “Worst” and “Expected”, mean that the problem is taken into
account in the worst case and in the expected case. Note that “NP-C” is filled in the
field if the game was proven to be an NP-Complete problem in that study while
“Fixed” is used in static Mastermind and indicates a fixed number of queries is
required. The field “Author” shows the scholars who conducted this research.

Because of space restrictions, we omit each citation of the corresponding paper in
Table 3, readers can reference the previous subsection for more information.
Furthermore, it deserves to be mentioned that our contributions to the area of

deductive games are also highlighted with gray backgrounds in Table 3.
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Table 3. Significant research of deductive games

Conclusive results

Progressive results

Year
Problem Case Author Problem Case Author
1976 4x6 Mastermind Worst Knuth [45]
1978 4x6 Mastermind Expected Irving [39]
1982 4x6 Mastermind Expected Neuwirth [53]
1983 4x4, 4x5 Mastermind Expected Shapiro [67]
1984 4x6 Mastermind Expected Norvig [54]
1986 Several dimensions of Mastermind| Expected | Ko and Teng [46]
1988 Several dimensions of Mastermind| Expected Flood [25]
1993 4x6 Mastermind | Expected [Koyama and Lai [47]
1996 Several dimensions of Mastermind| Expected | Bernier et al. [9]
Several dimensions of Mastermind| Expected | Bento et al. [7]
1999 4x6 Mastermind | Expected Rosu [59]
4x6 Mastermind Expected Swaszek [71]
2000 4x6 static Mastermind Fixed Greenwell [31]
4xn static Mastermind Fixed Goddard [29]
Temporel and Kovacs
Several dimensions of Mastermind| Expected
2003 [3xn static Mastermind| Fixed Goddard [29] [72]
Kalisker and Camens
Several dimensions of Mastermind| Expected
[43]
Worst,
2xn AB game Chenetal. [15]
expected
2004
Worst, Chen et al. [16],
2xn Mastermind
expected Goddard [28]
4x6 Mastermind Expected Barteld [6]
2005
Several dimensions of Mastermind| Expected Singley [68]
Mastermind Stuckman and Zhang
NP-C Several dimensions of Mastermind| Expected Ugurdag [73]
Satisfiability Problem [70]
2006
4x6 Mastermind with
Worst Huang et al. [38] 4x6, 58 Mastermind Expected | Merelo etal. [51]
an unreliable response
4x10 AB game Worst Chen et al. [18]
2007 4x6 Mastermind Expected| Chenetal.[17]
4x6 Mastermind | Expected Huang et al.
Jéger and Peczarski Jéger and Peczarski
3xn Mastermind Worst 4xn, mx2, and mxn Mastermind | Worst
[40] [40]
Mastermind with
NP-C Goodrich [30] Several dimensions of Mastermind| Expected | Berghman et al. [8]
black-peg results
2009
4x10 AB game Expected Huang et al.
3xn AB game Worst Huang and Lin
4x10 AB game with
Worst Huang and Lin

an unreliable response
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1.5 Terminologies of Deductive Games

There are two issues for optimizing deductive-game problems. One is to
minimize the queries made by the codebreaker in the worst case, and the other is to
minimize that in the expected case. An optimal strategy in the worst case is a strategy
which minimizes the maximum number of queries needed by the codebreaker for any
secret code chosen by the codemaker. An optimal strategy in the expected case is a
strategy which minimizes the expected number of queries required with
considerations of all possible codes. Note that a uniform distribution over all the
codes the codemaker may choose is assumed.

An alternative aspect of viewing the optimization for strategies of deductive
games as a game-tree search is adopted in this study. In order to formulate the
problem precisely, some general definitions used in the entire study are listed as
follows while other specific terms are defined in each chapter individually, if
necessary.

Definition 1. A secret code is eligible if it is compatible with all queries and the

corresponding responses given so far.
Definition 2. A set, which contains some eligible codes, is referred to as a state.

Definition 3. For an mxn deductive game, a state with only one eligible code, which
has also been queried by the codebreaker now, is defined as a final
state. That is to say that the secret code has been identified and the

game is over.

Definition 4. If finding an optimal strategy for a deductive game is regarded as a
game-tree search, then each internal node of the game tree indicates a
state while every leaf represents a final state.
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Definition 5.

Definition 6.

Definition 7.

Definition 8.

Definition 9.

Definition 10.

Definition 11.

The external path length (or called EPL for short) is the sum of the

depth of all leaves of the game tree.

The number of queries needed by the codebreaker in the expected case
(also called the expected number of queries) is L/k, where L is the
external path length of the game tree formed by the codebreaker’s

strategy and Kk is the number of all possible codes in the game.

A strategy discussed in the study refers to one of the options that the
codebreaker can choose. Each strategy has its corresponding game tree.

Trivially, the codebreaker has a lot of possible strategies.

An optimal strategy in the expected case is the strategy which has the
minimum expected number of queries. In other words, the external

path length of the game tree should be minimized.

An optimal strategy in the worst case is the strategy which has the
minimum pessimistic number of queries. Hence, the height of the game

tree should be minimized.

An equivalence transformation is defined as a composition of a
permutation on the set of symbols and a permutation on the set of

digits. Thus, a query @, is said to be equivalent to another query @, if
there exists an equivalence transformation t such that 9, = t(gl ) . This
concept is presented by Neuwirth [53].

Suppose the codebreaker has made i-1 queries, named as gy, 9o, ..., Qi-1,

then two codes U; and U, at the i-th query are called strategy equivalent

if <gl,gz,...,gi_1,u2>:t(<gl,gz,...,gi_l,u1>). In other words, we can
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only take U; as a representative for computing an optimal strategy if U,

., and Uj are strategy equivalent.
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Figure 3. A strategy for 3x4 AB game
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Figure 3, which is used for illustrating the above terminologies, is a codebreaker’s
strategy for 3x4 AB game. In the game, the codemaker comes up with a secret code
consisting of 3 digits out of 4 symbols, i.e., 0, 1, 2, and 3. A response, which is one of
[3,0],[2,01],[1, 2], [1, 1], [0, 3], and [0, 2], is received by the codebreaker in each ply.
Consequently, the codebreaker entails investigating the code with making use of those
responses. Each circle appearing in Figure 3 represents a state and the number in it is
a query made by the codebreaker at that moment while this state is encountered.
Every double-lined square means a leaf of the game tree or a final state. The text
above each arrow means the response offered by the codemaker. Note that the same
notations will be adopted in the following discussions.

Some phenomena are able to be verified easily from Figure 3. First, there are
totally 24 possible secret codes as the game starts and thus, these 24 codes are eligible
at that moment. Meanwhile, the set yielded by the 24 codes is the state at the
beginning. It is also obvious that the 24 leaves in the tree imply final states. Moreover,
Figure 3 exhibits that the external path length is 1x1 + 2x5 + 3x9 + 4x9 = 74 and the
expected number of queries required by the codebreaker is equal to 74/24 ~ 3.083 as
well. Meanwhile, the pessimistic number of queries is 4 since the height of the game

tree is 4.

1.6 Organization of the Dissertation

This research proposes a series of theoretical-pruning optimization algorithms
and mathematical proofs for deductive games and therefore, the following studies are
composed of five major parts. In Chapter 2, a complete search algorithm, depth-first
backtracking algorithm with branch-and-bound pruning, is introduced to address
Mastermind. Meanwhile, an admissible heuristic, which can be applied to various

deductive games, is presented as well. Chapter 3 demonstrates a refined
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branch-and-bound algorithm with speed-up techniques for AB game in the expected
case. Three useful techniques for accelerating the speed of the search algorithm are
brought up. In Chapter 4, 3xn AB games is investigated and a sophisticated method,
called structural reduction, is developed to explain the worst situation in this game.
Chapter 5 presents a variation of AB game, AB game with an unreliable response. An
important theorem for deductive games is proven and two algorithms based on it,
which are two-phase optimization algorithm with theoretical pruning and
pigeonhole-principle-based verification algorithm with theoretical pruning, are
proposed. Fortunately, an exact bound of the number of queries needed for the
problem is achieved because the upper and lower bounds resulting from the two
methods are equal. Chapter 6 concludes with remarkable results in our study and
some future work. Moreover, two appendixes, which contain the detailed information

on some proofs, are attached at the end of the dissertation.
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Chapter 2
Depth-First Backtracking Algorithm

with Branch-and-Bound Pruning

An optimal strategy in the expected case for Mastermind has already been
proposed by Koyama and Lai [47] in 1993 by using an exhaustive search but that
study took too much time to search the strategy. Therefore, a more efficient algorithm,
called depth-first backtracking algorithm with branch-and-bound pruning or
abbreviated to DBB, is developed for solving Mastermind in this chapter. Compared
to other heuristic methods, DBB can guarantee to yield the optimal tactic if the search
procedure finishes. Moreover, an admissible heuristic, which can be applied to
various deductive games, is presented as well. Section 2.1 gives an intuitive concept
of our proposed approach. Section 2.2 introduces our depth-first backtracking
algorithm with branch-and-bound pruning for Mastermind. In Section 2.3, some
experimental results are discussed. Section 2.4 summarizes our concluding remarks in

the chapter and a critical issue is mentioned for future research.

2.1 Introduction

Mastermind, whose dimension is 4x6, is a two-player game and both of two
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players involved are the codemaker and the codebreaker. Suppose that the set of the
six symbols, which may appear in secret codes, is S = {0, 1, 2, 3, 4, 5}. Thus, there
are 6° = 1296 valid secret codes in Mastermind. Meanwhile, there are also 14 legal
responses, which are [4, 0], [3, 0], [2, 2], [2, 1], [2, O], [1, 3], [1, 2], [1, 1], [1, O], [O,
41, [0, 31, [0, 2], [0, 1], and [0, O]. The other definitions and properties are described in
Chapter 1 and so, they are omitted here.

A complete algorithm with a novel pruning technique, named as a depth-first
backtracking algorithm with branch-and-bound pruning (DBB), is proposed to solve
the problem. The idea of our scheme is similar to the admissible heuristic in the A"
search. The A" search is a tree search algorithm which finds a best path from a given
initial state to a given goal with the lowest cost. The algorithm will terminate if a best
solution is found. However, a complete search is conceptually required for our
problem. Hence, DBB will search the full game tree and prune the unnecessary
queries by using an admissible heuristic. The following sections will demonstrate the

sophisticated algorithm and its power of searching.

2.2 The Depth-first Backtracking Algorithm with

Branch-and-Bound Pruning

A large number of real-world problems can be modeled as optimization problems
or games. A search algorithm is therefore a general approach for them. Unfortunately,
most of these problems are NP-hard or PSPACE. In other words, it has to take
exponential time to search for an optimal solution. Thus, there are plenty of pruning
techniques published in the literature such as A" search [62], branch-and-bound
pruning [52], and so on.

Previous pruning approaches are appropriate for optimization problems since
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their goal is to find a best solution in the search space. So, the search ends when it is
found. A complete search is theoretically required to our problem because of the
considerations of the optimal strategy in the expected case. Hence, traditional pruning
approaches may not easily be applied to our problem directly.

A novel pruning technique based on the admissible heuristic in the A" search is
proposed to solve the problem. In Section 2.2.1, the framework of our depth-first
backtracking algorithm with branch-and-bound pruning (DBB) is introduced. Section

2.2.2 illustrates the detailed operations of our scheme.

2.2.1 The Framework of DBB

The idea of our scheme is similar to the admissible heuristic in the A” search. The
A" search is a tree (graph) search algorithm which finds a best path from a given
initial state to a given goal with the lowest cost. The algorithm will terminate if a best
solution is found. However, a complete search is conceptually required for our
problem. Hence, DBB will search the full game tree and prune the unnecessary
queries by using an admissible heuristic. Notice that a solution described here means a

strategy for the codebreaker to identify a secret code with respect to our problem.
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/ final state
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final state

> h™: the theoretical lower bound

Figure 4. The scenario of branch-and-bound pruning
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Figure 4 shows a scenario of DBB. Suppose that h' is the cost from the root to the
current state and h™ is the cost from the current state to the final state. Then, h" is
called admissible if it never overestimates the cost to reach the final state. In other
words, the actual cost is less than or equal to h" + h”. It can also be viewed as a
theoretical lower bound for the problem we deal with.

Our scheme traverses the game tree in depth-first fashion until a final state is
reached. It then gets an actual cost S which is initially assigned to be the current-best
solution. Note that the actual cost s results from the query q; in its traversed path.
Afterwards, it soon backtracks to its parent, e.g., the current state, and picks one of
the other queries, e.g., the query Q,, and uses an admissible heuristic to estimate the
cost h” of 0. The search continues if s is larger than h" + h”. Otherwise, a cut happens
because § is less than or equal to h" + h”. In other words, there is no need to expand
the branch of , and the correctness of the algorithm is still maintained. This

continues in a similar manner until the full game tree is searched.

DBB (state V)

01 if (a final state is reached) then return the current-best solutions;  // Final state indicates the leaf of the game
tree.

02  Expandv;

03  for (each branch q of v) // Each qis a branch of v.

04 h"=ESTIMATE( q); // ESTIMATE is an admissible heuristic of
predicting the cost fromQ to a final state.

05 if (W +h"<s) then // h'is the actual cost from the start state tov.

06 DBB (the states resulting from Q); // Search recursively from the states
resulting fromq.

07 else

08 Cut the branch g; /I A cut happens ifh'+ h">s.

Figure 5. The depth-first backtracking algorithm with branch-and-bound pruning

A rough sketch of the entire algorithm is exhibited in Figure 5. It is especially
important to notice that DBB always maintains a current-best solution S during the
search. Hence, DBB goes through the downward direction at first until a final state is

reached. It therefore gets a current-best solution (S is updated). Then, DBB backtracks
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and starts to estimate h™ in each of the other queries. Unnecessary branches of the
queries will never be expanded. Note that it updates S constantly when final states are
encountered. So, DBB will finally obtain an optimal solution when the full game tree

has been traversed completely.

2.2.2 DBB for Mastermind in the Expected Case

In this section, we will deal with Mastermind in the expected case. First, the
pruning technique applied to Mastermind is introduced in Section 2.2.2.1. Second, the
admissible heuristic we used is designed and explained carefully in the follow-up
section. Eventually, an optimal strategy is found as a result of applying DBB to this

problem.
2.2.2.1 DBB for Mastermind

According to the analyses in Table 1, the search space for Mastermind is
(1296x14)> ~ 10*'. Therefore, it takes much time to find an optimal strategy by
searching the game tree completely. A pruning technique adopted by DBB is used to
save a lot of time instead of making an exhaustive search. Figure 6 shows the game
tree of Mastermind by applying DBB. The circles in the Figure 6 mean the states
which are the sets of eligible secret codes while the diamonds are the possible queries
the codebreaker can choose (1296 valid queries in each ply). In the game tree, the 14
branches produced by the codemaker’s responses should be traversed completely and
the 1296 branches expanded by the codebreaker may be pruned by the admissible
heuristic since we are aiming at finding an optimal strategy for the codebreaker. Let’s
consider the situation exhibited in Figure 6. The traversal to the subtrees of q; (in bold
style) is just finished and @, is now taken into account. An estimated value h™ is
obtained with the use of the admissible function. The subtrees below g, do not have to

be expanded if the result of expanding q; is better than h”. This is the key idea of DBB
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and the search can thus be completed in a more reasonable time. Note that the

correctness of DBB is preserved because of the admissible heuristic.

Figure 6. The game tree of Mastermind by applying DBB
2.2.2.2 The Admissible Heuristic for Deductive Games

Now the most critical issue is how to design an admissible heuristic function to
estimate the theoretical lower bound h™. Note that minimizing the number of queries
in the expected case is the same as minimizing the external path length of the game
tree. So, the concept of volumes introduced by Huang et al. [38] is involved to get the
theoretical maximum bounds for the 14 classes (responses). In order to make sense,
the term, “response”, is replaced by “class” here. We know that different queries in a
certain ply result in distinct distributions of the eligible codes in 14 classes. The
distribution discussed here is the sizes of 14 classes resulting from a certain query.
Thus, the volume of a class [X, Y] is defined as the maximum value of the numbers of
the eligible codes when the codebreaker makes all the valid queries in one ply and the

codemaker responses with [X, y]. In the beginning, at the root of Figure 6, there is a
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total of 1296 secret codes. While the first query is considered, there are 5
nonequivalent queries in 1296 possible codes, i.e., “0000”, “0001”, “0011”, “0012”,
and “0123” for the codebreaker [47]. If the codebreaker queries “0000” and the
codemaker gives the response [1, 0], then we can derive that there are 500 possible
secret codes. Similarly, if the codebreaker queries “0001”, “0011”, “0012”, or “0123”,
and the codemaker gives the response [1, 0], then we can derive that there are 317,
256, 182, and 108 possible secret codes, respectively. So, the volume of the class [1, 0]
is set to be 500, the maximum value of these numbers: 500, 317, 256, 182, and 108.
With the use of Get_volume function (see Huang et al. [38]) based on the above idea,
the volumes of the 14 classes (responses) are obtained as in Table 4.

Table 4. The volumes of 14 classes calculated by Get volume function

class |[[4, 0]|[2, 2]|[1, 3]|[0, 4]{[3, 01|[2, 1]{[1, 2]|[0, 3]|[2, O]|[1, 1]{[O, 1]|[O, 2]|[1, O]{[O, O]

volume | 1 6 8 9 | 20 | 48 | 132|136 | 150 | 252 | 308 | 312 | 500 | 625

The same principle of the extended pigeonhole principle presented by Chen et al.
[18] is therefore employed to estimate the lower bounds of the queries needed.
However, there are major differences between the problem in the previous study
(Chen et al. [18]) and this problem we consider now. Only the worst case among the
14 classes is considered for the codemaker in that paper. The so-called “worst case”
denotes the response (class) which will result in the maximum number of queries
required by the codebreaker. But each class should be taken into account for our
problem.

The heuristic function here has to calculate the “theoretical optimal” number of
queries in the expected case for a certain query (or called the lower bound of a certain
query) for the codebreaker. Suppose that the lower bound of a query q is assessed by
the codebreaker. The query q results in 14 classes. It will assume that there exists an
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optimal strategy such that all of the eligible codes in each class may be divided evenly
in the following queries. The rated value calculated by this heuristic for a state (one of
the 14 classes) is the external path length (EPL) of the subtree that is yielded by the
theoretical optimal strategy we imagine. So, the actual expected number of queries is
thus larger than or equal to the estimated value. Trivially, the heuristic is admissible
because a theoretical optimal strategy is assumed to rate the EPL of the subtree of
each class formed by Q. Moreover, it can be applied to any deductive games by
adjusting the number of legal classes (the number of legal responses the codemaker
can give) and its volume of each legal class since any other specific knowledge do not
have to be considered. In other words, the lower bound of a query ¢ by utilizing this
heuristic is equal to the summation of each EPL with respect to 14 classes plus the

size of the state, which is the original state before g is made.

2 2 2 1 1 1 1 1 1 1 1 1 1
D 6 8 9/ 20 48 13 136/ \150/ \25 308/ \31 500/ \625
1 1 10
6 6 N

]

Figure 7. An example of the calculation of the admissible heuristic for Mastermind

A simple example to illustrate the calculation of the EPL regarding some class
(state) yielded by q is shown in Figure 7 with the use of the proposed admissible
heuristic. Given a state with a size of 17, as shown in Figure 5, we imagine that the
theoretical optimal strategy will divide the 17 eligible codes into 14 classes evenly
without exceeding the corresponding volumes. The number in the lower half of the
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circle is the volume of each class and the number in the upper half is the number of
eligible codes in it. Since there is 1 leaf at level 1, 13 leaves at level 2, and 3 leaves at
level 3, it is obvious that the external path length of the tree is 1x1 + 2x13 + 3x3 =36
in the ideal situation. Thus, the external path length of the example must be smaller
than or equal to the actual expected number of queries. It is therefore easy to see that
the heuristic is admissible because it never overestimates the expected number of

queries.

2.3 Experimental Results

In order to analyze the performance of the proposed DBB, we demonstrate the
results of the original version of Mastermind (4x6 Mastermind) and another version
of Mastermind, which is 3x5 Mastermind. 3x5 Mastermind has smaller search space
in the case of 3 digits with 5 possible symbols. That is to say that it has 5° = 125
possible secret codes totally. Note that the equivalent properties proposed by
Neuwirth [53] are able to reduce the search space. For example, “0000” is equivalent
to “1111” at the first query because the numbers, 1 and 2, are both not used before.
With the considerations of the properties, there are five nonequivalent queries at the
first query, which are “0000”, “0001”, “0011”, “0012”, and “0123”. The branching
factor in the first ply changes from 14x1296 to 14x5 eventually. This technique has
also been implemented in our programs in order to speed up the search.

Besides the comparison between 3x5 Mastermind and 4x6 Mastermind, we also
investigate the effect of the traversing order during the search. In other words, we
have to decide which query is promising when several queries are encountered after
the current state is visited. To deal with this issue, we estimate the lower bounds of
the child states by making use of the admissible heuristic before they are expanded.

We sort their lower bounds and traverse these queries order-by-order in accordance
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with their values. The smaller the value is, the earlier the traversal is. All experiments
were run on a dedicated PC with an AMD Opteron 252 processor. The experimental

results are exhibited in Table 5.

Table 5. The experimental results of two versions of Mastermind

3x5 4x6
Mastermind Mastermind
DFS > 10 hr. > 10 days
DBB 38.68 sec. 43.76 hr.
DBB (promising query) 11.21 sec. 9.5 hr.
External path length 451 5625

DFS is the abbreviation of depth-first search while the term, “promising query”,
means that DBB expands the queries in nondecreasing order according to the values
of lower bounds. We can see that DBB is able to obtain the optimal strategies for the
two versions and their corresponding external path length is 451 and 5625,
respectively. This means that the expected number of queries is about 4.34
(=5625/1296) for Mastermind if we apply the optimal strategy in the expected case.
The results also show that DBB with the considerations of promising queries has the
best performance. Without the judgement of promising queries, DBB will traverse a
lot of useless queries. That is to say that most queries will be cut if DBB expands
queries in the correct order.

From the experimental results, DFS has very poor performance doubtlessly since
it is certainly an exhaustive search. Hence, DFS can not search the full game tree in a
reasonable time and the total number of the states it has to expand is still unknown.
On the other hand, DBB is significantly superior to and is over 25 times faster than
DFS. Totally, there are 137834651 states expanded by DBB. The results also reveal

that the larger the search space is, the more important the pruning technique is.
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2.4 Chapter Conclusion

Previously, an exhaustive search was applied to find the optimal strategy for
Mastermind. But it may not be adopted in other harder problems or games because of
its huge search time. In this chapter, a more efficient depth-first backtracking
algorithm with branch-and-bound pruning (DBB) for Mastermind in the expected
case is introduced, and an alternative optimal strategy is obtained eventually.
Moreover, an admissible heuristic, which can be applied to various deductive games,
is presented as well. From the experimental results, the effect of expanding promising
queries during the search is significant to the performance of DBB. Meanwhile, DBB
is significantly superior to and is over 25 times faster than the traditional search
algorithm. How to design a more precise admissible heuristic is yet another critical
issue. Furthermore, it may be interesting to compare our method with other search
algorithms or other heuristics mentioned in the previous studies with the consideration

of the qualities of solutions and the search time.
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Chapter 3
Refined Branch-and-Bound

Algorithm with Speed-up Techniques

Another famous deductive game is AB game, which is popular in Asia and
England. However, to date, there have been no optimal expected-case strategies for
AB game in formal literature since its appearance. Since the complexity of these
deductive games grows at an exponential rate with higher dimensions, DBB can not
be directly applied to efficiently solve AB game in the expected case.

In this chapter, a refined branch-and-bound algorithm with speed-up techniques,
which is abbreviated to RBB, is demonstrated for AB game in the expected case. This
algorithm is based on DBB and three useful techniques such as the incremental update
of the lower bounds, the hashing technique, and the reduction of equivalent queries
are invented to integrate with it. Therefore, RBB will lead to the hope that the optimal
tactic of AB game in the expected case is attained. Section 3.1 reviews our handled
problem and compares the search space between Mastermind and AB game. Section
3.2 introduces a refined branch-and-bound algorithm while new techniques and
significant improvements are demonstrated here as well. In Section 3.3, some

experimental results and discussions are given. Section 3.4 summarizes the
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remarkable results in this chapter.

3.1 Introduction

AB game, which is also called “Bulls and Cows” in England, is another popular
deductive game around the world for decades as well. Its dimension is 4x10 and there
are also two opponents involved in this game, which are called the codemaker and the
codebreaker respectively. There are ten symbols appearing in possible secret codes of
AB game, e.g., 0, 1, 2, ..., and 9. Note that the repeated symbols are not allowed in a
single secret code. Thus, there are 10!/(10-4)! = 5040 valid secret codes in AB game.
Meanwhile, the 14 legal responses of AB game, which are [4, 0], [3, 0], [2, 2], [2, 1],
[2,01,[1,3],[1,2],[1, 1], [1, O], [0, 4], [0, 3], [0, 2], [0, 1], and [0, O], are the same as
those of Mastermind. The accurate definitions are exhibited in Chapter 1 and
therefore, these descriptions are omitted here.

The search space, which means all possible strategies the codemaker and the
codebreaker can adopt, for 4x6 Mastermind and 4x10 AB game is compared in the

following equation:

(5040x14)’ - 10"
(1296 x14Y

Notice that the upper part of the equation is the search space for 4x10 AB game while
the lower one is that for 4x6 Mastermind. Clearly, the search space for 4x10 AB
game is far larger than that for 4x6 Mastermind. Moreover, the search space
represents the required time to discover an optimal strategy for the codebreaker since
the expected number of queries is considered. Hence, it is clear that the difficulty of
solving AB game is much harder than that of solving Mastermind.

To the best of our knowledge, the optimal strategy of 4x10 AB game for the

codebreaker has never been discovered and meanwhile, its corresponding expected
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number of queries has not been determined yet due to its difficulty. In Chapter 2, a
fruitful pruning framework, DBB, relied upon the admissible heuristic in the A” search
was proposed to solve 4x6 Mastermind. However, it is not capable of solving 4x10
AB game right away since it has much huger search space than 4x6 Mastermind. In
this chapter, our goal aims at finding an optimal strategy of 4x10 AB game for the

codebreaker to minimize the expected number of queries.

3.2 A Refined Branch-and-Bound Algorithm with Speed-up

Techniques

A full search is theoretically conducted to our problem so as to consider the
optimal tactic in the expected case. Because DBB can not solve the concerned
problem directly, a refined approach based on it is demonstrated. Furthermore, the

idea of DBB will be introduced briefly to make this chapter self-contained.

3.2.1 The Fundamental Framework in Terms of Branch-and-Bound
Pruning

Although DBB proposed in Chapter 2 can not explore the game tree directly
within a reasonable time, it remains a vital basis for us. Therefore, a brief introduction
to DBB is still given here.

DBB and the A" search act in a similar way. The A" search is regarded as a tree
(graph) search algorithm which looks for a path from an initial state to a final goal
with the lowest cost. It will terminate if a best solution is obtained. However, a full
search is necessarily engaged in dealing with our problem because we need to
calculate the value of the external path length of the game tree. Hence, DBB will
carry out a search of the whole game tree and prune the useless states by taking

advantage of an admissible heuristic. Notice that a solution described here denotes a
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strategy for the codebreaker to identify a secret code with respect to our problem.

Let h denote the cost from the root to the current state and h™ be an estimated
cost from the current state to a final state. Then, h” is called admissible if it never
overrates the cost to reach the final state. In other words, the actual cost is less than or
equal to h"+ h". It can also be viewed as a theoretical lower bound for the problem we
cope with.

DBB first traverses the game tree in depth-first fashion until a final state is
reached. It then gets an actual cost S which is initially assigned to be the current-best
solution. Note that the actual cost S results from the query Q; in its traversed path.
Afterwards, it soon backtracks to the current state, and picks one of the other queries,
e.g., the query qp, and uses an admissible heuristic to estimate the cost h™ of q,. The
search continues if s is larger than h + h”. Otherwise, a cut happens because s is less
than or equal to h + h". This continues in a similar manner until the full game tree is
searched. Figure 4 shows roughly the scenario and Figure 5 exhibits this algorithm.
The current state is what we consider presently. An admissible heuristic will be used
to estimate its cost h™ and thus, h + h” is compared with the actual cost s to determine
whether it should be cut or not.

In accordance with the analyses in Table 1, the search space for AB game is
(5040x14)” =~ 10**. Figure 8 shows the game tree of AB game by applying DBB
directly. The circles in Figure 8 mean the states which are the sets of eligible secret
codes while the diamonds are the valid queries the codebreaker can choose (5040
queries in each ply). In the game tree, the 14 branches yielded by the codemaker’s
responses should be traversed completely and the 5040 branches expanded by the
codebreaker may be pruned by the admissible heuristic since we are aiming at finding
an optimal strategy for the codebreaker. Let’s take the situation exhibited in Figure 8

into account. The search to the subtrees of (; (in bold style) is just finished and ¢, is
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now considered. An estimated value h” is obtained by using the admissible function.
The subtrees below g, do not have to be expanded if the result of expanding q; is

better than h”.

Figure 8. The game tree of AB game by applying DBB directly

The admissible heuristic presented in Section 2.2.2.2 with slight modifications of
the volume of each legal class is utilized to estimate the lower bounds of the numbers
of queries. Likewise, different queries in a certain ply result in different distributions
of the eligible codes in the 14 responses. Similarly, the volume of a response [X, Y] is
also defined as the maximum value of the numbers of the eligible codes when the
codemaker responses with [X, y]. The first query made by the codebreaker has only
one choice here because all of the queries are equivalent at the first query. As a result,
g =“0123" is selected as the representative for the first query. The numbers of eligible
codes of each class after g is made form these volumes are concluded in Table 6.
From the analyses in Section 2.2.2.2, the actual expected number of queries is thus

larger than or equal to the value of estimations. An example to illustrate the
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calculation of the EPL about some class (state) is shown in Figure 9. Notice that the
only difference between Figure 7 and Figure 9 is their volumes.

Providing a state with a size of 17, as shown in Figure 9, we imagine that the
theoretical optimal strategy will distribute the 17 codes into 14 responses evenly
without exceeding the corresponding volumes and so does the optimal strategy in
each of the following levels of the game tree. The number in the lower half of the
circle is the volume of each response and the number in the upper half is the number
of secret codes in it.

Since there is 1 leaf at level 1, 13 leaves at level 2, and 3 leaves at level 3, it is
obvious that the external path length of the tree is 1x1 + 2x13 + 3x3 = 36. Thus, the
actual external path length of a state with a size of 17 must be larger than or equal to
36. The heuristic is therefore admissible because it never overrates the expected

number of queries.

Table 6. The volumes of 14 classes in AB game

class |[4,0]|([3,0]|[2,2]|[2,1]|[2,0]|[1,3]]|[1,2]][1,1]|[L,0]]([O,4]]|[0,3]]|1[0,2]][0O,1]]|T[O,0]

volume 1 24 6 72 180 8 216 | 720 | 480 9 264 | 1260 | 1440 | 360

2 2 2 1 1 1 1 1 1 1 1 1 1
E 6 8 9j 24 72 180, 16 264/ \360/ \480/ \720, 126 1440
@4?@?;;;;%;;;;;
o/ LT LT

O

Figure 9. An example of the calculation of the admissible heuristic for AB game
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3.2.2 The State-of-the-Art Techniques

The fundamental framework has been reviewed in Section 3.2.1. It has been
proven dramatically that the algorithm is highly suitable for addressing deductive
games. However, it is not enough to handle AB game in the expected case. Some
attributions of the game are observed seriously so that three critical challenges are
summarized as follows.

B How to increase the precision of the lower bound?

B How to avoid expanding the redundant states?

B How to prune the equivalent queries?

An optimal strategy will be discovered providing that these challenges are able to
be coped with totally. Fortunately, a refined branch-and-bound algorithm with
speed-up techniques (RBB) is designed and three useful techniques contained in it are

introduced and discussed among the follow-up contents.

3.2.2.1 Technique 1: Incremental Updates of the Lower Bounds

During the gaming process, there will be generally 5040 queries for the
codebreaker in each ply. When a new state is met, a current best solution S is acquired
after DBB undertakes a search to one of the 5040 branches. Thus, DBB has to check
other queries and two possible cases are going to take place. One case is that the rated
lower bound of the query is less than S, and then the search into it occurs. The other
case is that the search will be omitted according to branch-and-bound pruning because
s outperforms this rated lower bound. Obviously, this mechanic of the process comes
up with a new idea naturally. The percentage of the cutoffs is going to increase
markedly if the estimated lower bounds become higher by calculating it more
accurately. Concrete steps are offered below.

Suppose that the current best solution S is provided by the query g. There is
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another query called g that we analyze now and moreover, s refers to the lower
bound which has been rated by the admissible heuristic H at the beginning. Assume
that s is less than s. It is clear that the subtree yielded by g~ has to be explored in
accordance with our proposed manner. However, we come up with an idea to update
the lower bound incrementally during the exploring process of g° so as to stop
searching as soon as possible providing that s~ becomes equal to or larger than s. In
the detailed considerations, g divides the current state into 14 classes (responses) so
that H is able to rate its external path length (EPL) with the 14 classes. Hence, S is
summed with the 14 rated numbers. When every class has been traversed, a real EPL
of this class is available as well. Once a real cost of exploring the class has been
acquired, an update to S happens immediately. Furthermore, s grows gradually as we

explore these classes one by one.

s" grows gradually during
the search to this subtree.

Figure 10. A situation that depicts the exploring process

When an update happens, s competes with the up-to-date s~ at the same time. The

exploring process of g stops if s~ is equal to or larger than s. Otherwise, it keeps on

36



working until the subtree formed by g is searched entirely. And the follow-up actions
are performed with the use of DBB as usual. A situation that depicts the searching
process is shown in Figure 10. Meanwhile, the bold lines and shaded areas highlight

whatever has already been searched and s is the latest lower bound until now.
3.2.2.2 Technique 2: Earlier Terminations

It is trivial that the game is over if there exists only one choice for the
codebreaker and he has just figured it out. It is also clear that the searching process
should be terminated if we are aware of the external path length (EPL) of some states
precisely. Accordingly, a critical issue for obtaining the exact EPL of some states has
arisen. It is highly difficult to know the exact EPL without conducting a search when
the state is larger. In this case, there is a chance to get it more early only if the state is
smaller enough. In order to cope with this, two types of pruning methods are proposed
to achieve the goal of earlier terminations if the size of a state is below 12.

B Theoretical pruning
If the size of a state is 2, it is easy to notice that the game tree in Figure 11

is optimal and its EPL is therefore 3.

[4, y

Size =2

Size =1

[4,0]

Figure 11. An optimal strategy for a state with a size of 2

On the other hand, the size of a state is 3 is then taken into account. We
notice that two situations occur. One is that the tactic for this state chooses

one of these three eligible codes as the next query. This will result in a [4, 0]
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class appearing in its game tree. The left portion, i.e. (a) and (b), of Figure
12, in which there exist two kinds of possible trees, indicates the
phenomenon. The other situation is also offered in the right portion, i.e. (c),
(d), and (e), of Figure 12, where there are three possibilities in addition. The
right part implies that the codebreaker chooses one query from all possible
codes except the three ones in this state. Note that the scenario of (e)
describes that the size of the state still remains 3 after the query in this ply
is taken, where EPL' is the external path length of the following state. In
other words, there is no use making this query but to increase its EPL by 3

in addition.

(a) (c) Size =3
Size =3

[ﬁy
s LR
[4,0

EPL=EPL'+3

Figure 12. All possible game trees for a state with a size of 3
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By perceiving the overall figure, the EPLs for the left trees are 5 and 6
respectively while those of the right ones are 6 and above. It means that an
optimal strategy will be generated only by taking the left two trees into
account. In this case, the correlations among the three eligible codes should
be considered. Assume that the three queries (secret codes) are named as 0,
02, and @3, where their correlations are Iy, 23, and rs; respectively. The
correlation here indicates the response made by the codemaker providing
that one of these three queries is his secret code when the codebreaker takes
another query from the two residual codes. Note that the optimal EPL for a
state with a size of 3 is 6 if rj2, 23, and r3; are all equal, i.e. the situation of
Figure 12(b). Otherwise, the optimal EPL must be 5 as shown in Figure
12(a). With this observation, the optimal EPL can be easily calculated
without searching all the 5040 valid queries.

From the above theoretical analyses, we know that the EPL of a state can be
easily determined if the state is able to be analyzed. In other words,
theoretical pruning of valid queries is feasible if the size of a state is 2 or 3.
Practical pruning

In accordance with the previous analyses, it seems to be intuitive that DBB
will terminate and backtrack earlier if the optimal EPL can be decided as
earlier as possible. Furthermore, a crucial property is realized by
investigating the game tree when the size is sufficiently small. It reveals
that the full game tree is filled with duplicated states with smaller sizes.
This discovery comes up with a good idea which is able to reduce the
searching time by storing the EPLs of explored states, whose size are
between 4 and 12. By utilizing the concept, a hash table is implemented

naturally to meet the requirement. The Zobrist hashing approach [74] is
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adopted as a hash function and a simple replacement method, in which a
new record just replaces the value that is already in the corresponding slot,
is employed to resolve collisions. Due to the low collisions of the Zobrist
hashing method, the simple replacement policy is highly efficient for our
problem. Before the use of the Zobrist hashing method, a random number is
generated for each possible secret code and represents this corresponding
code in the searching process. Suppose that we now have a state with n
eligible codes, where the value of n is between 4 and 12. All corresponding
random numbers of the n codes are XORed together and the result modulo
the size of the hash table is computed to acquire a hash key, which
represents the corresponding position for storing this state in the hash table.
So, the information of the state and its corresponding optimal EPL are
stored in this position after the state has been explored. Once a collision
occurs, the new record just replaces the old one that is already in the
corresponding position. The EPLs are going to be looked up in the hash
table when new states are encountered. Although the hash table is designed
in a basic manner, it has contributed substantial performance improvements.
The experimental results will clarify the progress in the later discussions.
Note that the hash table occupies about 1.6 Gbytes memory because it has
2% entries and each entry contains 13 integers (one for storing the EPL and
12 for keeping the 12 secret codes at most). From an informal test, the
performance is better if an entry stores the state whose size is at most 12.
Remember that the larger the state which is stored in an entry of the hash
table is, the more time our program should take if the program has to decide
whether the current state is traversed or not.

Due to the huge number of codes in larger states and the huge amount of memory
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space for storing the larger states and their EPLs, the states whose sizes go above and
beyond 12 will not be held in the hash table. This implies that a normal search is

carried out to them.

3.2.2.3 Technique 3: Reductions of Equivalent Queries

The technique introduced in Section 3.2.2.2 focuses on pruning the leaves in the
game tree. Moreover, an overall subtree will be cut thoroughly if we can reduce the
number of the choices the codebreaker has to concern about at the first few queries.
At the first query, only one choice, instead of 5040 secret codes, should be considered
because there are no symbols that are used before and the 5040 codes are therefore all
equivalent. “0123” is adopted as the first query here. At the second query, only four
out of ten symbols are used by the first query and the other six unused symbols (4,
5,.., and 9) can be treated as equivalent ones. Hence, at the second query, we can only

) 4 ) .
consider C(4.i)x P(4.i)=209 nonequivalent codes, where 1 is the number of
, , q
i=0

symbols used at both the first and the second queries. Furthermore, 20 equivalent sets
that come from further categorizing the 209 codes are gained by employing the
concept of equivalence transformation demonstrated by Neuwirth [53]. An
equivalence transformation is defined as a composition of a permutation on the set of
colors, called C, and a permutation on the set of positions, called P. For instance, an
equivalence transformation t is defined as follows:
C:[0123456789J’P:(0123j.
0312 45¢6 7289 0 3 1 2

Then, the query, “0132”, is equivalent to “0213” while t(0132) = 0213. Furthermore,
a crucial property, strategy equivalent, which can help us to reduce the search space,
is described in Definition 11 of Chapter 1. In other words, we can only take p; as a
representative for computing an optimal strategy if p;, Pz, ..., Pn are strategy

equivalent. The equivalent secret codes at the first three queries can be obtained by
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using exhaustive search to verify each possible strategy or making use of the algebra
package, Nauty, which is a program based on the paper introduced by McKay [50] for
computing isomorphism and automorphism groups of graphs.

Table 7, in which each row stands for an equivalent set, lists all of the 209 codes and
their categories with the use of the concept of strategy equivalent codes at the second
query. Their corresponding equivalence transformations are attached at Appendix A
as a proof. The equivalence transformations of strategy equivalent codes at the third
query are not listed due to space restrictions. In Table 7, the first code in every row,
which is highlighted with bold letters, is chosen as the representative since the codes
in the same row are all strategy equivalent.

Table 7. 20 equivalent sets of the 209 codes at the second query

Order Elements of each set
1 0123
2 0132, 0213, 0321, 1023, 2103, 3120
3 4567
4 0231, 0312, 1203, 1320, 2013, 2130, 3021, 3102
5 1032, 2301, 3210
6 1230, 1302, 2031, 2310, 3012, 3201
7 0124, 0143, 0423, 4123
8 0456, 4156, 4526, 4563
9 0145, 0425, 0453, 4125, 4153, 4523
10 1456, 2456, 3456, 4056, 4256, 4356, 4506, 4516, 4536, 4560, 4561, 4562
11 0134, 0142, 0243, 0324, 0413, 0421, 1423, 2143, 3124, 4023, 4103, 4120
12 0245, 0345, 0415, 0435, 0451, 0452, 1425, 1453, 2145, 2453, 3145, 3425,

4025, 4053, 4105, 4135, 4150, 4152, 4253, 4325, 4503, 4513, 4520, 4521
13 1045, 2405, 3450, 4215, 4351, 4532

1245, 1345, 1405, 1450, 2045, 2415, 2435, 2450, 3045, 3405, 3451, 3452,
4015, 4051, 4205, 4235, 4251, 4315, 4350, 4352, 4502, 4512, 4530, 4531

15 1435, 1452, 2345, 2451, 3245, 3415, 4035, 4052, 4250, 4305, 4501, 4510

16 0214, 0341, 0432, 1024, 1043, 2104, 2403, 3140, 3420, 4132, 4213, 4321
0234, 0241, 0314, 0342, 0412, 0431, 1243, 1324, 1403, 1420, 2043, 2134,
2140, 2413, 3024, 3104, 3142, 3421, 4013, 4021, 4102, 4130, 4203, 4320

18 1034, 1042, 1432, 2304, 2341, 2401, 3214, 3240, 3410, 4032, 4210, 4301
1234, 1240, 1304, 1342, 1402, 1430, 2034, 2041, 2314, 2340, 2410, 2431,
3014, 3042, 3204, 3241, 3401, 3412, 4012, 4031, 4201, 4230, 4302, 4310

20 1204, 1340, 2014, 2430, 3041, 3402, 4231, 4312

14

17

19
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In spite of declining the branching factors of the game tree at the first three
queries, there are still numerous choices in the following plies. A similar mean is
thereby going to be provided so as to reduce the possibilities at the fourth query. All
of the unused symbols during the first three queries are treated as the same one. In
short, those choices, in which a few digits contain the same used symbols in the same
digits and the rest digits are composed of other unused symbols, are equivalent
definitely.

For example, providing that the first three queries are “0123”, “1045”, and
“1758” respectively, both “3869” and “3896” will belong to the same equivalent set
because 6 and 9 are not used in the previous queries. With this simple concept, the
number of the fourth query will be declined extremely in average and the concrete

results are going to be presented in the next section as well.

3.3 Experimental Results and Discussions

This section presents two parts of outcomes which result from the proposed
techniques. The first part is to exhibit the individual effects according to each of the
three techniques. The second one will make a comparison between DBB and RBB by
applying them separately to Mastermind, which has a much smaller search space. This
may indicate how efficient our new method is. Finally, AB game is drawn on it and
we thereby attain the success in finding the optimal tactic in the expected case. Notice
that all the experiments are run on a DELL Precision 7400 Workstation equipped with
a Quad-Core Intel Xeon X5450 CPU and 8 Gbytes RAM. Only a single core is

utilized at a time due to the sequential programs regardless of a multi-core CPU.

3.3.1 The Effects of the Three Useful Techniques

Table 8 shows the effects with the incremental updates of the lower bounds. Note that
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Technique 2 and Technique 3 are integrated into the programs either with or without
Technique 1 in this experiment in order to save an enormous amount of running time.
The left column in Table 8 indicates the selected states with some proper sizes after
making the first query for AB game.

For example, Cys, g refers to the state after the codemaker replies [3, 0] and |Cp3,
is consequently the number of its eligible codes. The right two columns present the
running time required to traverse each subtree of the corresponding state either with
or without the use of Technique 1. It is obvious that the speedup of Technique 1 is by
a factor of about 5 for some larger states, e.g. Cii, 13, Cp1, 07 and Cyo, ;. It also shows that
the larger the size of the state is, the higher the speedup is.

Table 8. The running time of exploring some states after making 1* query

Size of the state | Without Technique 1 (Seconds) With Technique 1 (Seconds)

|Cp2. 1yl =72 20 11

ICp2. ] = 180 121 41

ICp1.27l =216 357 120

ICp1, 1yl =720 47645 8386

ICp1, 0l =480 3001 518

|Cpo. 31| = 264 1361 317

|Cpo, 21| = 1260 1616865 148592

An evaluation to Technique 2 is depicted in Table 9 and Table 10. The statistics
of counting up the numbers of the descendant states with a size of 3 for some states
are conducted within Table 9. For instance, there are totally 418161 descendant states
that contain 3 eligible codes while a search to Cp; ,) has been undertaken. The result
represents the numbers of the cases that Technique 2 can be applied, so the optimal
tactic for these states will be gained quickly and easily. This means we can save much
time because we do not examine all the 5040 choices in the next ply. On the other
hand, the hash table demonstrated in Technique 2 may sometimes be viewed as a

cache and detailed information to its performance is thus listed in Table 10.
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Table 9. The numbers of the descendant states with a size of 3

States # of the descendant states with a size of 3
Cp. 01 4540

Cp. 1 28474

Cp. o 12042

Ci. 418161

Cr, o1 91826

Cro.31 1627148

Note that the corresponding random number for each secret code is 64 bit and the
size of the hash table is 2% in our implementation. The state, Cy;, 2, is taken to serve
as an example for the illustration. It means that 366621 states whose sizes vary from 4
to 12 are able to be looked up in the table directly as 27375 ones are not available in it
and they have to be explored thoroughly and then be inserted into the table. The hit
rate, which is 366621 divided by (366621+27375), is thereby about 0.931. The hash
table occupies about 1.6 Gbytes memory in our design and receives a considerable
performance promotion.

Table 10. The numbers of hits and misses by using the hash table

States # of hits # of misses Hit rate
Cp.o 3434 502 0.872
Cp. 1 11863 1815 0.867
Cp.o 20350 8160 0.714
Cii.2 366621 27375 0.931
Ci.o 163347 106346 0.606
Cpo.3) 1698126 65811 0.963

The results shown in Table 11 provide the assessments of Technique 3. Recall
that the numbers of the choices taken by the codebreaker in the first two plies are 1
and 20 respectively. Table 11 lists the numbers of the third choice and the average
numbers of the fourth choice the codebreaker can make and meanwhile, the numbers

for the first two choices are offered in it as well.
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Table 11. The numbers of choices at the first four queries

1t query | 2" query | #of choices at the 3™ query | Average # of choices at the 4™ query
0123 0123 20 852.85
0123 0124 107 1296.66
0123 0132 67 809.37
0123 0134 270 1255.17
0123 0145 295 1993.36
0123 0214 270 1255.17
0123 0231 75 790.99
0123 0234 501 1234.25
0123 0245 1045 1959.62
0123 0456 363 3020.61
0123 1032 39 807.97
0123 1034 270 1255.17
0123 1045 295 1993.36
0123 1204 175 1246.02
0123 1230 59 783.29
0123 1234 501 1234.25
0123 1245 1045 1959.62
0123 1435 541 1957.71
0123 1456 1012 3008.06
0123 4567 180 4162.67

From Table 11, it is easy to realize that the numbers of the third choice vary from

20 to 1045, i.e. 356.50 in average, which occupies 7.07% of the original 5040 choices.

Moreover, it also shows that the average number of the fourth choice is 1643.81,

which is 32.62% of the original 5040 choices. Therefore, a considerable amount of
redundant choices at the first four queries has been removed with the use of

Technique 3. In fact, the search space of the entire game tree has roughly become

(1x14)-(20x14)-(356.50% 14)-(1643.81x14)-(5040x 14)’, where 356.50 and 1643.81 are

the averages of the branching factors at the third and fourth queries respectively.

3.3.2 Performances and Results of RBB for Solving Mastermind and
AB Game

In order to examine the performance, a deductive game with smaller dimensions,
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Mastermind, is first explored with the proposed approach composed of all significant
refinements except Technique 3. Technique 3 can not be applied in Mastermind
because repeated symbols are allowed in the queries of the game. The program relied
upon RBB therefore finished the work with 43 minutes in the experiment and gained
the optimal EPL that is 5625. This means that the expected number of queries of the
optimal strategy in the expected case for Mastermind is 5625/6* ~ 4.34. On the other
hand, it has to take 451 minutes to complete the same work with the use of DBB.
Hence, RBB outperforms DBB by 10 times faster only with the first two techniques.
Note that DBB explores 137834651 states during the searching process while RBB
only expands 31720272 states.

With the success, RBB integrating all the three techniques to find the optimal
tactic of AB game in the average case was thereby undertaken. An invaluable result
was eventually gained in about 18 days (From Nov. 6, 2008 to Nov. 23, 2008). The
optimal strategy for AB game was therefore obtained and its corresponding EPL is
26274. Moreover, a partial strategy is also presented in Appendix B. Now we have the
following theorem.

Theorem 1. The expected number of queries of the optimal strategy in the expected

case for AB game is 26274/5040 = 5.213.

3.4 Chapter Conclusion

In this chapter, we focus on finding the optimal strategy in the expected case for
AB game. An elegant approach, which is named as refined branch-and-bound
algorithm with speed-up techniques (RBB), essentially based on the incremental
update of lower bounds, the hashing technique, and the reduction of equivalent
queries is designed to explore its huge search space. In the development of pruning

techniques, we also realize that the ratio of pruning is significant if the pruning is
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based on theoretical analyses. In order to compare RBB with DBB, Mastermind is
first addressed by applying these two methods individually. A dramatic improvement
is exhibited in the outcomes and RBB outperforms DBB over 10 times faster.
Fortunately, an optimal strategy for AB game in the expected case is eventually
obtained by utilizing RBB. The corresponding external path length is 26274. In other
words, the expected number of queries required by the codebreaker is 26274/5040 =
5.213. Note that Appendix B attached at the end of this dissertation contains the

partial optimal strategy for AB game, which is discovered by RBB.
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Chapter 4

Structural-reduction Approach

In this chapter, a sophisticated method, called structural-reduction approach
(SR), which aims at explaining the worst situation in 3xn AB games is developed.
Section 4.1 introduces our addressed problem and additional definitions that are used
in this chapter. Section 4.2 analyzes the optimal strategies for the codebreaker and the
devil’s strategy for the codemaker. In Section 4.3, a practical example is offered to
describe the pessimistic situation of this game. Section 4.4 concludes with our
analyses and a worthwhile formula for calculating the optimal numbers of queries

required for arbitrary values of n is derived and proven finally.

4.1 Introduction

3xn AB games means that there are 3 digits in a single secret code and each digit
has n possibilities (symbols). Suppose that the set of symbols appearing in 3xn AB
games is S = {0, 1, 2, ..., n — 1}. From the analyses of Chapter 1, the number of all
legal responses is 9 and these responses are [3, 0], [2, 0], [1, 2], [1, 1], [1, O], [0, 3], [O,
2], [0, 1], and [0, O] respectively. Meanwhile, the number of all possible secret codes
equals to n(n — 1)(n — 2) as well. For example, assume that the codemaker chooses ¢ =
215 as a secrete code and the codebreaker makes a query g = 012. Then, the
codemaker will offer a response [1, 1].
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Before 3xn AB games are discussed formally, some additional definitions besides
those offered in Chapter 1 have to be explained first in order to describe the analyses
precisely. Thus, they are defined as follows.

Definition 12. Let C; and C, denote two states in the game tree. We say that C; is
harder than C, if identifying a secret code in C; requires more queries
than that in C,. In other words, the difficulty of a state means how

many queries the codebreaker requires to identify a secret code.

Definition 13. A strategy of responses taken by the codemaker is called a devil’s
strategy or an adversary response if this strategy maximizes the

number of queries required by the codebreaker.

Definition 14. Suppose that there are two states, which are C; and C, respectively. If
there exists a one-to-one function r such that each secret code in C;
maps another one in C, and preserves the structure of C;, then we say
that C, dominates C;. Furthermore, r is called a structural reduction. In

symbols, we write C; < C,.

Now, 3x5 AB game is taken into account as an illustrative example. Suppose that
the set of five symbols in this simple game is S = {0, 1, 2, 3, 4}. If the codebreaker
makes a query, 012, and the codemaker responses [2, 0] in the first ply, the eligible
codes are therefore 013, 014, 032, 042, 312, and 412 after the first ply. The set Cjp 01 =
{013, 014, 032, 042, 312, 412} forms a state. From the result of the later experiment,
which conducts an exhaustive search to 3x5 AB game, the number of queries required
is maximum if the codemaker implements a devil’s strategy to provide the response,
[0, 2], at the first response.

On the other hand, Cy; and the state, Cjj o) = {043, 034, 432, 342, 314, 413},

which is produced when the codemaker responses [1, 0] at the first response, are then
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considered. Notice that the elements in Cpp; are of the forms, 01b, 0b2, or b12, where

b e B = {3,4}. Thus, we define a structural reduction of r as

0lb— 0zb
r:{0b2+> zb2 ,wherebeBandzeB-{b}.
bl12 - blz

Figure 1 exhibits the mapping of each code in Cp,; in detail. Note that the mapped
codes in Cjj o) preserve the structures of those in Cppo). This implies that finding a
secret code in Cpj o) is as hard as or harder than that in Cp ;. Intuitively, this is also
obvious since there is one more identified symbols in Cpp; than in Cj; ). Hence, we
say that Cjj o; dominates Cp, ;. Furthermore, the structural reduction has the property
of the transitive relation obviously. That is to say that given three states, C;, C,, and

C3, C1 < C3 1fC1 < C2 and C2 < C3.

Ca, 01 Cr1, o1

Figure 13. Mapping from codes in Cp, ; to those in Cy; ) for 3x5 AB game

4.2 Optimal Analyses for the Codebreaker and the

Codemaker

In this section, we divide the analyses into two parts. The first part discuss a
special kind of states C* that will be considered to determine the best query for the
codebreaker when he encounters this kind of states. Then, the discussion in the next
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part will reveal that the special states that are discussed here just match the attribution
of states resulting from the devil’s strategy for the codemaker. Consequently, our

conclusions are attained finally.

4.2.1 Analyses of the Optimal Queries for the Codebreaker

Before the formal discussion, a critical concept should be clarified first.
Intuitively, the more secret codes a state has, the harder the codebreaker identifies a
secrete code in it. However, the rule is not absolutely correct especially when the size
of one state is very close to that of the other. Hence, the structural reduction is
adopted to determine the difficulties of two states instead of simply comparing their
sizes in the following discussion.

Suppose that S = {0, 1, 2, ..., n — 1} represents the set of symbols appearing in
3xn AB games. The set, B = {b, by, ..., bn_1}, is a subset of S, where b; € S and |B| = h,
3 <h < n - 3. Moreover, another set, A, is defined as A=S — B = {ay, ai, ..., &n.h.1},
whose cardinality is (n — h).

Assume that there is a special state, called C*, which consists of the secret codes
that are all possible permutations of h symbols in B. In other words, the special state
has h(h — 1) (h — 2) secret codes in it. This state may be regarded as a subproblem of a
3xn AB game, i.e. a 3xh AB game. Notice that the symbols in A do not appear in the
codes of the special state because of the definition of C. We can intuitively treat the
symbols in A as those eliminated from previous responses made by the codemaker.

Now, imagine a scenario where C" is encountered for the codebreaker during the
process of playing a 3xn AB game. Since any symbols in S may be used in a query
made by the codebreaker for a 3xn AB game, all possible queries for the codebreaker
can be classified into four types according to the numbers of symbols that belong to A

and B. Thus, the four types of queries for the codebreaker are listed and discussed as
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follows. Here we suppose that aj, a;j, a € A and b;, bj, bk € B.
1. ajajax
All symbols of this type of queries belong to A. If the codebreaker makes this kind
of queries, all eligible codes are then classified into the substate, Cjo o), trivially. So,
the queries of Type 1 are redundant and non-optimal results will be obtained if the
codebreaker chooses this kind of queries.
2. bkaia, aibkaj, and aja;bi
The queries of Type 2 contain two symbols in A and one symbol in B. This type of
queries can be further divided into three kinds of queries such as bya;a;, aibxa;, and
a;a;bx in accordance with their positions of symbols. Without loss of generality, g =
bxaiaj is taken to conduct the following analyses. The discussions of the other two
can be undertaken in a similar way. Three nonempty substates, which are Cp; g},
Cio.13, and Cyogj, are produced as the codebreaker makes the query g. Note that their
cardinality are (h — 1)(h — 2), 2(h — 1)(h — 2), and (h — 1)(h — 2)(h — 3) respectively.
Now, we can show that Cjg,1; < Cjo,0; and Cpy 01 < Cpo 01 if h > 5.
Lemma 1. If the codebreaker encounters the state, C*, and then makes the query, g
= baa;, aibaj, or aiajbk, where &, a8 € A and bx € B, then Cjy
dominates Cpo,;j and Cp; g7 if h > 5.

Proof. In order to prove that Cjo1; < Cjo,0}, @ structural reduction, ry, is defined as

bbb, —b,zb,
" :{bpbqbk b bz, ,whereb b, eB'=B-{B, }andz,z, B ~{b,,b,}.
From ry, it reveals that the structures of the secret codes, which are b,?bq and bybg?,
are preserved after mapping. Note that bpz;by and bpbyz, should be distinct to
reserve the property of one-to-one mapping. We can achieve this by assigning the

symbols of z; and z, carefully while mapping is conducted. On the other hand, there

should be two symbols left for the assignments of z; and z, once b, and by have
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been fixed during the mapping. The proof is therefore correct if h > 5. The proof of
Cio.17 < Co,07 s finished now. Afterwards, another structural reduction, I, is defined

as

r, :bb b, > zb b, whereb,,b, € B'=B~{b,}and z, € B'~{b,b, |.

p~g> P>

There should be one symbol left for the assignment of z; once by, and by have been

assigned. Hence, the proof is right if h > 4. In other words, Cj;0; < Cjo,0;. From the

results of r; and r;, we know that Cpy ) dominates Cpo 17 and Cyj o) when h > 5. This

completes the proof of Lemma 1. L]

. aibjby, bjaiby, and bjbia;

The queries of this type are composed of a symbol in A and two symbols in B.

These queries can also be further classified into three kinds of queries, i.e., aibjby,

bjaiby, and bjbyai. Without loss of generality, g = ajbjby is choosen to undertake the

following discussions. Besides, the analyses of bjaibx and bjbiai can be derived in a

similar way and so, they are omitted here. There are six nonempty substates after

the codebreaker makes the query g. They are Cp05, Cii,13, Cio23, Cri.03 Cio,17, and

Cio,0) respectively. Note that their corresponding cardinality are (h — 2), 2(h — 2), (h

—2),2(h—2)(h = 3), 4(h — 2)(h = 3), and (h — 2)(h — 3)(h — 4). Now, we show that

Cio,0 dominates the other five substates if h > 8.

Lemma 2. If the codebreaker encounters C’, and then makes the query, g = aibjby,
bjaiby, or bjbiai, where ai € A and bj, by € B, then Cjo) dominates Cjo 13,
Cr1.01 Cro23, Cpi,13, and Cpp 0y when h > 8.

Proof. Five structural reductions, called r3, r4, I's, I's, and 17, are defined as follows

to certify that Cjo17 < Cjo01, Cr1,01 < Cro01 Cro21 < Cro,13, Cpi,i7 < Chiyop, and Cpo) <

Ci1,0) respectively.
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p>=aq

bbb, > z,b,b,

b,b,b, F>b,b,z, ,whereb b eB =B-{b,b,}
bbb, > zb,b,  andz,2,,2,,2,€B'~{b b, }
b,b.b, > b, 2,0,

bbb, F>b,zb, , whereb,,b, e B'=B—1b,
bbb, |—>bbz and 7,2, € B'—{b,,b, |.

u-‘

b,b.b, Hbzb ,whereb, eB'=B—{b,,
bbb, >bb 2z, andz,2,,2,eB —{b |
b

{bbb —b;zb,

| bbb, > zbb, , whereb, e B'=B—1b,
‘|bb,b >2z,bb,  andz,z,eB'—{b,}.

r,:bb,b, > b.bz,, whereb, € B'=B~{b,,b,fand z, € B'~{b, |.

Note that z;bpbg, bpbgza, 3bsbg, and bpzibg in rs3 should be distinct to reserve the
one-to-one mapping property. Likewise, bpz;bq and bpbgyz, in rs should be distinct
and bjz;by,, bpz;bj, and bybyzs in rs should also be distinct while z;bjb, and z:byby in
I'c have to be distinct as well. We can attain this with assigning these symbols of z;,
25, 23, and Z4 carefully when mapping is undertaken. In order to meet requirements
of the assignments of z; in I3, I'y, I's, I's, and I, the following conditions should be
maintained respectively: h > 8, h>6,h> 6, h> 5, and h > 4. Consequently, it is
true that Cyoo; dominates Cio,13, Cr1,05, Cro23, Cp1,13, and Cpa,07 while h > 8. Hence, the
proof of Lemma 2 is completed. 0
. bibjby

All symbols of this kind of queries belong to B entirely. There are totally nine
nonempty substates, which are Cp3 o), Ci1.23, Cpo31, Cr2.05 Cr1.13> Cro23, Cpi07, Cpo,13, and
Cio,0 respectively, as the codebreaker makes the query, g = bibjbx. Notice that their

cardinality are 1, 3, 2, 3(h — 3), 6(h — 3), 9(h — 3), 3(h — 3)(h — 4), 6(h — 3)(h — 4),
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and (h — 3)(h — 4)(h — 5) respectively. In the following statements, we would
certify that Co,17 < Cio.05, Ci1,01 < Ci0,015 Co.21 < Cro.13 Cp1.11 < Cri,035 Cr2.01 < Criop, Cro3
< Cio.01, Cpi21 < Croy07, and Cpz 07 < Cpo ).
Lemma 3. As the codebreaker encounters C', and then makes the query, g = bibjby,
where b, bj, bk € B, then Cjg0; dominates Cpo,13, Ci1,05, Co.21, Cpi,13 Cr2.00,
Cro.37> Cpi23, and Cpz gy when h > 11.
Proof. Since the cardinalities of C3 o5, Cj1 23, and Cyo 3 are fixed numbers, then Cpo o
trivially dominates Ci3 o}, Cj123, and Cjo3; as long as there are at least three symbols
in B and thus, the three symbols can be permuted appropriately to map the three
substates. On the other hand, five definitions of structural reductions, which are
named as I, I', I'0, '11, and 2, are provided as follows to confirm that Cj 17 < Cjo g},
Ci1,01 = Cr0,03, Co21 = Cpo,13, Cpi,11 < Cpi 03, and Cpp 7 < Cpy g7 respectively.

b,bb, F> b,z,b,
bbb, - b,b, Z,

bbb, > z,b,b, ,whereb,,b € B'=B—{b,b,,b,}
: bbb, =>bb.z, andz,z,,2;,2,,2,,2, € B’—{bp,bq}.
bbb, > z,b,b,
b,b.b, > b,zb,

bbb, F> 2,b,b,
f,:4b b b, >b z,b, , whereb,,b, eB'=B—{b.b, b}
bbb, b bz,  andz,2z,,2, B ~{b,,b, |

p>=q)-

bbb, > z,bb,
b,bb, > b,z,b,
bbb, > z,b.b,
bbb, b zb,
r,:4b,bb, b bz, whereb, e B'=B—{b,b, b, fand 7,2, e B'~{b,}.
beb,b, > b.b,z,
bbb, > 2,bb,
bbb, > beb,z,
b,beb, > b, 2,b,
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bbb, - bb,z,
bbb, - b,z,b,
bbb >b,b,z, ,whereb, e B'=B—{b,b,,b, }and z,,z, e B'~{b,}.
bbb, > 2,0,
bbb, > b,z,b,
b,b,b, > 2,b,b,

bbb, = bzb,
r,:{bb,b, > 2zb b, ,whereb eB'=B—{b,b, b, fandz, € B ~{b,}.

b,b;b, = b b;z,
Note that each secret code in each structural reduction, i.e., I's, I, I'10, 11, and Iz,
should be distinct from each other to reserve the one-to-one mapping property. This
can be attained by assigning these symbols of z;, z,, z3, 24, Z5, and z¢ carefully. On
the other hand, to satisfy each assignment of zj in rg, ro, I, 1, and Iy, the
following constraints have to be kept respectively: h>11,h>8, h>6,h>6, and h
> 5. So, it is therefore correct that Cjo o dominates Co.13, Cri,01, Co21, Cri.13, Cra.00

Cio31, Cp1.2), and Cpz 0 when h > 11. Hence, the proof of Lemma 3 is completed. [

After four kinds of queries for the codebreaker are discussed, only three kinds of
queries among them are useful since the first one causes non-optimal results trivially.
In order to simplify the notations, let C(Z), C® and C® denote the hardest states
caused by queries of Type 2, Type 3, and Type 4 respectively. Hence, the difficulties
of these three states have to be determined to choose the best query for the
codebreaker. The following lemma therefore describes the phenomena.

Lemma 4. When the codebreaker encounters C', the hardest states caused by queries
of Type 2, Type 3, and Type 4, i.e. C®, C®, and C, are produced. Thus,
we have C¥ < C® < C?.

Proof. From the meanings of C(z), C(3), and C(4), it reveals that C? is composed of

secret codes that are permutations of (h — 1) symbols, and C® consists of what are
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permutations of (h — 2) symbols while the codes in C*¥) are permutations of (h — 3)
symbols. Let $?, %, and S® denote the sets of symbols appearing in C?, C®, and
C® respectively. Then, let the symbols in S?, S®, and S be sorted separately
according to the lexicographical order. A mapping is generated naturally if we map
each symbol in S® to that in S’ one by one in sorted order. So does the mapping
between S® and S¥. Obviously, we have C¥ < C® < C?. This proof is completed
entirely. ]
Concluding with Lemma 1, Lemma 2, Lemma 3, and Lemma 4, we have the
following lemma.

LLemma 5. For a special state, C*, which also represents a 3xh AB game (11 <h <n),

the optimal query for the codebreaker now is bibjby, where b;, bj, bk € B.

Proof. From Lemma 4, C¥ is the easiest state to identify a secret code compared to
C? and C®. The goal of the codebreaker is to minimize the number of queries
required and so, the codebreaker has to choose the query which results in C¥) in the

worst situation. The optimal query for the codebreaker is therefore bjbjb. ]
4.2.2 The Devil’s Strategy for the Codemaker

Since the mission of the codebreaker aims to minimize the number of queries to
acquire a secret code, the codemaker tries to maximize the number of queries for the
codebreaker if he decides to implement a devil’s strategy. Hence, the worst case for
the codebreaker means that his opponent conducts a devil’s strategy (or called a worst
response for the codebreaker) in each ply during the gaming process in order to
maximize the number of queries. In the follow-up, a lemma is exhibited to
demonstrate what is the worst response for the codebreaker if he encounters a 3xh AB
game, where h <n.

Lemma 6. For a 3xh AB game, where 11 < h < n, the codebreaker will require a
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maximum number of queries to get the code while the codemaker

answers [0, 0] after the codebreaker’s query.
Proof. From Lemma 5, it is obvious that the codebreaker must choose bibjby as a
query for a 3xh AB game. After the codebreaker makes the optimal query, nine
substates will be formed. These substates are Cpo0;, Cio13, Cri.01, Cro21, Crii1» Cr2005
Cio31, Cpi2p, and Cp3 ) respectively. Cpoop dominates Cio13, Cri01, Cio21, Cpii1, Cra0,
Cio31, Cpi2, and Cp3 o7 in accordance with the result of Lemma 3. In other words, Cy
is the hardest substate among the nine ones. Conclusively, the codemaker must
response [0, 0] as his worst response and this will result in the worst case for the

codebreaker because of the maximum number of queries. The proof is therefore

finished. O

4.3 An lllustrative Example of the Pessimistic Situation

In order to clarify the key idea of the pessimistic situation (worst case) of 3xn AB
games we have discussed above, a 3x20 AB game, which is a 3xn AB game while n =
20, is taken as an illustrative example. The scenario is shown in Figure 14. Suppose
that the set of symbols is S = {Co, Cy, ..., Cio}. In the first ply, the codebreaker makes
the first query, CoCiCs, and the codemaker offers [0, 0] as the first response which is
the worst-case response. Thus, the 3x20 AB game reduces to a 3xh AB game, where
h = 17. The similar operations proceed at the second and third queries. After the third
query and third response, the original 3x20 AB game reduces to a 3x11 AB game.
The minimum number of queries can not be obtained easily with the use of analyses
when h < 11 because of the irregular behavior. Hence, a branch-and-bound search
algorithm, which has been proposed in Chapter 2, is applied to find an optimal

strategy for smaller h.
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Figure 14. The scenario of the pessimistic situation of a 3x20 AB game
4.4 Chapter Conclusion

From the above discussions, the optimal query for the codebreaker and the
adversary response for the codemaker, which refers to the worst case for the
codebreaker as well, are eventually obtained with the consideration of the special state
C’. In the follow-up, all results mentioned above will be concluded to derive a
theorem.

Theorem 2. For a 3xn AB game, the minimum number of queries for the

codebreaker in the worst case is
[n/3]+3 ,if 3<n<7
{|_(n +1)/3]+3 ,if n>8.
Proof. At the beginning of a 3xn AB game, the n symbols are not used and then all
secret codes are all equivalent. As a result, a secret code is chosen randomly as the
first query for the codebreaker. Nine substates are therefore produced and [0, 0] is
taken as an adversary response according to Lemma 6. Afterwards, Cjoo;, which
results from the first response, matches the attribution of the special state C” described

in Lemma 5. Thus, Lemma 5 can be applied to this state. We find that the situations
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mentioned in Lemma 5 and Lemma 6 will appear alternately in the following gaming

process. So we have the following recurrence.
T(n)=T(n-3)+1, whenn>11.

Because of the irregular behavior of a 3xn AB game with a smaller value of n, its
minimum number of queries can be obtained with the use of a branch-and-bound
search algorithm, which originates from Chapter 2, when n < 11. After the use of
computer programs written with this approach, the minimum numbers of queries
required for the codebreaker in the worst case are obtained in several hours and they
are 4,4,4,5,5,6, 6, 6, and 7 respectively whenn=3,4,5,6,7,8,9, 10, and 11. For
example, an optimal strategy for 3x7 AB game is considered with S = {0, 1, 2, 3, 4, 5,
6}. If the codemaker takes 165 as a secret code, a gaming process in the worst case
will be as follows: 012, [0, 1], 023, [0, 0], 041, [0, 1], 156, [1, 2], 165, [3, 0]. In other
words, the codebreaker requires 5 queries to identify 165 while playing the worst-case
optimal strategy.

We derive the above recurrence and conclude with the results of smaller values of

n. Hence, the closed form of the formula is exhibited as follows.

[n/3+3 ,if3<n<7,
{L(”+1)/3J+3 ,if n>38.

This completes the proof. L

Partial results of 3xn AB games, 3 < n < 16, are summarized in Table 12. As 3xn
AB games have been solved successfully, a natural generalization is to explore the
techniques for mxn AB games, where m > 4. This problem remains open.

Table 12. The minimum number of queries for 3xn AB games in the worst case

n 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16

# of queries | 4 4 4 5 5 6 6 6 7 7 7 8 8 8
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Chapter 5
Optimization Algorithm and

Verification Algorithm

This chapter introduces two algorithms, called the two-phase optimization
algorithm (TPOA) and pigeonhole-principle-based verification algorithm (PPV) to
investigate the game, AB game with an unreliable response. TPOA was proposed by
us in [17] and was proved to be an effective approximate algorithm for deductive
games. PPV is modified slightly from the pigeonhole-principle-based fast
backtracking algorithm in [37], which was also demonstrated by us. Section 5.1 gives
a comprehensive introduction for our problems while some notations are redefined
here to match the properties of the handled problem. Section 5.2 provides an
introduction to TPOA and its performance. In Section 5.2.3, PPV is illustrated and the

verified results are also shown. Section 5.4 contains the summary of our remarks.

5.1 Introduction

In this chapter, a variant of AB game, which is called AB game with an
unreliable response, is presented. The game is the same as 4x10 AB game in addition

to the concept of fault tolerance added to the variant. In other words, there is an
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additional rule in the game — the codemaker is allowed to give at most a wrong
response. For example, it is a wrong response if the codemaker answers [1, 0] instead
of [1, 2] if the codemaker chooses “2134” as a secret code and the codebreaker makes
a query “0123”. Furthermore, the termination criterion of the game is modified in
order to fit in with the area of fault tolerance. That is, the game is over if there is only
one eligible code now. In short, it is not necessary for the codebreaker to figure out
the secret code but to acquire it in his mind.

AB game with an unreliable response has ever been studies by us [37]. That
results show that the upper bound of the required number of queries in this game is 9
while the lower bound of it is 8. Unfortunately, the two bounds are not the same and
then, two more effective algorithms will be exhibited in this chapter to decide the

exact bound of it.

{0, 1,2}, {})
gi2=1
< = >
({0}, {1, 2}) ({1}, {0, 2} ) ({2}, 10, 1} )
92,=0 022=1 023=2
< = > < = > < = >
COL 03] 03, G s {0, 1,23 )| CE {0, 1 )| (ALY, O] (s {1, 23 )] (3, 10, 1,23 )| ({23, )] (4 23)
O2=1 931=0 g32=1 030=1
< = > = > = > < = >

COL O3 D COL A L (230 | (O 03] | s )| | (L T[] L {230 | KL 03 || (8, (1)) (s 23)

Figure 15. A game tree for the 1x3 game with an unreliable response

In order to clarify the problem and our proposed methods precisely, here we
redefine some notations, which may have been defined in Chapter 1, to match the
properties of AB game with an unreliable response. Consequently, a simple number
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guessing game, denoted 1xn games with an unreliable response, is taken as an
illustrative example to explain these new notations. In the 1xn games with an

unreliable response, the codemaker chooses a secret code ¢, ¢ = {0, 1,2, ---, n — 1}.

After each query g made by the codebreaker, the codemaker gives him a response I, r
= {<, =, >}, i.e., they stand for g <s, g =S, and g > S. The codemaker is allowed to
give at most a wrong response in this game. The goal of the game is to obtain the
secret code by using as few queries as possible. We can represent the gaming process
as game-tree search. For instance, a game tree for the 1x3 game with an unreliable

response consisting of internal nodes and leaves is shown in Figure 15.
Definition 15. The state <Ci(0),Ci(l)> consists of two sets, which are composed of
eligible codes after the codebreaker makes the i-th query. The first set

Ci(o) is the set of secret codes which satisfy all previous responses and
Ci(‘) represents the set of secret codes which satisfy all but one of the
previous responses. For example, the root in Figure 15 is <{0,1,2},{ }> ,
which indicates that the elements in Céo) are 0, 1, and 2 while C(gl) 1S

an empty set.

Definition 16. A weight, (‘Ci(o) Ci(l)), is a couple of natural numbers. The first

b

(0)

number is the size of the set C;”’ and the second number is the size of

the set Ci(l). For instance, the weight of the root in Figure 15 is (3, 0).

Definition 17. The query g;; made by the codebreaker means that the query is the j-th

choice among all valid queries with respect to the current state and
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(i-1) queries have been made previously. In Figure 15, “gs, = 17

means that it is the third query and the query is 1.

Definition 18. There are 14 legal responses in AB game. After the codebreaker makes

the (i+1)-th query and the (i+1)-th response offered by the codemaker

is j, this query will divide each set of the current state <Ci(0),Ci(l)> into
14 subsets, <Ri(4(.)1),j , Ri(i{,->, J=L2,...,14 _ In other words,

14 14
U Ri(fl),j =Ci(0) and LJj=1 Ri(ﬂ,j =Ci(1).

j=1

Definition 19. A final state is the state which is <Ci(°),Ci(1)> and ‘Ci(o)‘+‘0i(l)‘ =1.In

other words, only one eligible code remains in the final state and the

game iS OVver.

From the above definitions, the accurate relation of the states in each ply can be
derived. Suppose that the codemaker offers j as the (i+1)-th response after the (i+1)-th
query. The codebreaker has to consider whether the response j is correct or not. Hence,
there are two possible cases discussed below.

B If the response is correct, the states we have to consider now are therefore
0 1
Ri(H), i and Ri&%,j .

B If the response is wrong, we need to think of this state, U Ri(fl),p .
1<p<l4,p#j

Before the game starts, we know that Céo) is the set that contains all valid secret

codes and Cél) = ¢ . From the two discussed cases, we have the following relations.

cl) _ g

i+l i+, »

Ci(ﬂ = Ri(ﬂ, i U[ U Ri(fl),p}

1<p<li4,p#j
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During the gaming process, the secret codes, which dissatisfy the previous
responses just one time, will be moved from Ci(o) to Ci(l). If the secret codes in Ci(l)

dissatisfy a response again in the future, we do not have to consider these codes in the

following plies.

5.2 Two-Phase Optimization Algorithm

The two-phase optimization algorithm (TPOA) was originally proposed by us to
solve Mastermind [17]. It is an approximate algorithm and is able to discover results
with higher quality. TPOA can also be thought as a general improver for heuristic
strategies. That is, given a heuristic, TPOA has higher chance to obtain results better
than those obtained by the heuristic. Moreover, it sometimes can achieve near-optimal
results that are difficult to find by the given heuristic.

In this section, we will attempt to apply TPOA to discover the upper bound of the
number of queries for AB game with an unreliable response. We first review the
properties of TPOA and the hashing collision group that is used in TPOA. Second, a
well-designed hashing function and the heuristic of evaluation are provided. Finally,

TPOA is utilized to address the game.

5.2.1 The Structure of TPOA

The search tree of TPOA, abbreviated to TPOA tree, is divided into two phases,
exploration and exploitation. The objective of exploration phase is to discover
promising partial solutions; on the other hand, the exploitation phase is to choose the
way that leads each of the partial solution to a “best” complete solution. Two
parameters, the branching factor k and the exploration depth d, are used to decide
how large the search space TPOA intends to explore. That is, the parameters

determine how many potential (promising) solutions that TPOA will exploit.
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We [17] have presented two versions of TPOA, which are TPOA"™ (k, d) and
TPOA’(k, d), in the previous study. Because a larger search space may be required to
get a better upper bound of the game, only TPOA™ (K, d) is adopted to investigate our
problem. TPOA™ (k, d) indicates TPOA with a branching factor of k and an
exploration depth of d. The TPOA" (k, d) tree is shown in Figure 16. Given a TPOA
tree with an arbitrary height h, after level d the algorithm does a greedy search form
that node on. The number of potential solutions exploited in a TPOA™ (k, d) tree will

be k.

Exploration
Phase

---------------------------------------------
- ~.

Exploitation '
Phase i

----------------------------------------------

h-d <

Figure 16. The construction for TPOA" (k, d) tree

The structure and properties of TPOA are described now. Given parameters (k,d),
the sketch of a recursive procedure for TPOA is shown in Figure 17. TPOA can be
implemented by a modified exhaustive depth-first search on a TPOA tree. The main
modification to depth-first search is that at each visited node in the exploration phase
(within depth d), we consider only b branches and ignore other branches. In Figure 17,

TPOA" has a fixed b (= k) in the exploration phase, as shown in line 3. In the
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exploitation phase, TPOA" has a fixed b = 1 in line 4. Therefore, TPOA (K, d) is able
to prune a huge search space to a manageable size k® as shown in F igure 16. For AB

game, since the 14 response nodes at each level should be kept, the search space is

reduced to (14><k)d.

TPOA(k, d, b, ¢) { /'K, d: the given constants
1 I=Current level(); /I get the current level in the TPOA tree
2 If (cis a complete solution) Then Return c;
3 If(<d) Thenb=k; // in the exploration phase
4 Elseb=1; // in the exploitation phase
5 For (eachmove m € M) /I M: the set of all next potential moves
6 i = Hash(m); // classify possible next moves to HCGs by a
7 HCG; <« HCG; U {m}; hash function
8 B = {HCG;j| HCG; is the top b groups that could obtain promising results};
9  For (each HCG;j € B) // B: the set of b selected HCGs
10 ¢i = Choose(HCG;); /I ci: the selected representative for HCG;
11 C=Cu{c}; // C: the set of b representatives Cj in B
12 S« O //'S: the set of potential solutions from
13 For (each ¢; € C) descendant nodes
14 si= TPOA(k, d, b, c)); // recursively b-way search to find the best
15 S«Su{s}; solution from descendant nodes
16 C=Maxses (eval(si)); // select the best solution discovered in S
17 Return c; // return C to the parent node.

}

Figure 17. The sketch of TPOA

Given two constants (k, d), the time complexity of TPOA" (k, d), in terms of
number of nodes exploited, is k? (h — d), where h is the height of the game tree, i.c.,
the number of queries required in the worst case. This means that no matter how large
an instance of problem is given, TPOA can always obtain an approximate result by
appropriately selecting the parameters (k, d). Furthermore, depending on the
execution time and space allowed, the value of parameters (K, d) can be increased to

approach the optimal result. Now, the fundamental components of TPOA are
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summarized as follows:
B A constructive heuristic for the problem at hand
B A hash function according to the heuristic
B Two parameters (k, d) to decide how large the search space TPOA intends to

explore

5.2.2 Hash Collision Groups

In TPOA, how to select the (most likely) best b next potential components is a
critical issue. The problem can be effectively and efficiently solved by a clustering
approach. TPOA performs clustering using a concept of hash collision groups [14],
which are abbreviated to HCGs. The next potential components of solutions with
similarity are clustered together in an HCG by a given hash function to the problem at
hand. That is, the potential components with the same hash value will be clustered
together. Section 5.2.3 will give detailed examples of how the clustering mechanism
works. Properties of HCGs are now described. Figure 18 illustrates the relation
between HCGs and equivalent classes in a search space of next potential components.
There are several advantages of using HCGs in TPOA. The important properties of
HCGs include:

B For two components in the same HCG, they are most likely equivalent. On
the other hand, for two equivalent components, they are definitely in the
same HCG.

B Given a hash function, it is efficient to obtain the b best HCGs.

B Without losing the generality, an arbitrary component can be chosen to
represent its HCG.

Therefore, TPOA is able to efficiently and effectively select the b “best”

representatives among all next potential components. On the other point of view, if an
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evaluation function is used in TPOA, each HCG can be regarded as a set of the next
potential components which have a tie on the return value of the function. Note that

most ties are equivalent but equivalent solutions will produce ties.

o Components
i HCGs
O Equivalent classes

Figure 18. The relation between HCGs and equivalent classes
5.2.3 TPOA for AB game with an Unreliable Response

In this section, TPOA will be applied to our problem, AB game with an

unreliable response. Figure 19 shows the game tree by applying the TPOA to this

©) C(l)> is the j-th state, i.e., the j-th class (response), after

problem. Among them, <Ci’ G
the i-th query. And @;; is the j-th among the k best codes chosen by the TPOA at the
i-th query.

According to the hashing function, which will be demonstrated in Section 5.2.4,
all valid queries are categorized into several HCGs and the representative of each
HCG is evaluated in order to select k best codes as the explored queries. The designed
hashing function and the heuristic of evaluation are described in detail in the next
subsection.

In the beginning, the initial state is the root of the game tree in Figure 19, which
means that there are totally 5040 queries satisfying all previous responses. Note that
while the codebreaker takes the first query into account, TPOA chooses the k best

codes, Ji.1, 912, --., Jik to conduct this search. After that, there are 14 classes which

have to be expanded since the codemaker has 14 legal responses. Then the
70



codebreaker selects k best queries to expand the game tree again after the first
response is determined. The two steps take turns until the final state is met. At final
state, the program backtracks to its parent node and expands other branches

continuously.

Ci(o): the set of eligible codes which satisfy all previous responses :

Ci(l) : the set of eligible codes which satisfy all but one previous responses !

_______________________________________________________________
~

Exploration Phase™.,

N
N

(cf.ct) (cl9.cty) (eiely) (eiell) (ciel)

k queries

gZ,l
. . .

\
. . .

Y

\ . .

AN

A ‘
(cft.cll) {c.cih)
S~ LR NY
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1
1 . .
1
! . .
1
: : .

Figure 19. The game tree expanded by TPOA
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5.2.4 The Hashing Function and the Heuristic of Evaluation

Now, a hashing function is designed carefully and a simple heuristic proposed by
Barteld [6] is utilized to cooperate with TPOA. Although the two methods are
uncomplicated, they are adequate to solve our problem.

Hashing function for TPOA:

Suppose given a state, <Ci(0),Ci(])> , let the sizes of the 14 response classes (states),

which result from Ci(o), after a query g be Séo) =<Ri(fl),1,Ri(fl),z,-.-,Ri(fl),14> while the

i(1)

sizes of the 14 response classes (states) resulting from C;’, after a query g is

Sél) =<Ri(+12,1,Ri(ﬂ,z,-.-,Ri(B,14>. Afterwards, the hash function sorts the original two

sequences, Séo) and SS) , into nonincreasing sequences, S_éo) and S_él) ,

independently. The hash function is therefore defined as follows:

Hash(<S(°) S(l)>): <S_g(°),8_g(l)>,

g °79

In other words, assume that two queries, g and p, are considered. If §éo) =S ,SO) and
§él) =S },‘) , then the query g and the query p are classified into the same HCG.

Remember that we also guarantee the fundamental properties of the designed
hashing function that (1) for two components in the same HCG, they are most likely
equivalent, and that (2) for two equivalent components, they are definitely in the same
HCG. Therefore, we can arbitrarily choose a secret code to represent its HCG, rather
than exhaustively explore all secret codes in the HCG, and obtain an approximate
result.

Heuristic of evaluation:

In the previous analyses, the height of the game tree has to be minimized so as to

obtain the optimal strategy for the game in the worst case. However, it is not intuitive
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to determine the significance between the number of codes in Ci(o) and that of codes

in Ci(l). Hence, a simple and efficient heuristic, called “most-parts heuristic”,

demonstrated by Barteld [6] is used in TPOA. The most-parts heuristic focuses on the
“breadth” the eligible secret codes can be spread. In other words, the more classes the

eligible secret codes can occupy after a query, the more favorable this query is.
Because a state in our problem has two sets, e.g., <Ci(0),Ci(l)>, the most-parts

heuristic has to sum up the number of the nonzero numbers in Séo) and that of

nonzero numbers in Sél) according to a query g. The higher the score is, the better

the query is. For example, the query g is better than the query p if the numbers of

parts caused by g and p are 24 and 18 respectively.

5.2.5 Experiment Results of TPOA

When our program based on TPOA was implemented and tested, we ran it on a
dedicated PC equipped with an Intel Core 2 Duo CPU whose frequency is 3.16 GHz.
In order to accelerate the running time of TPOA furthermore, another technique is
implemented as well. That is, during the searching process, TPOA will terminate as
soon as it has found a strategy, in which the minimum number of queries is 8 in the
worst case. Thus, this may reduce the necessity to search all the possible pathways in
the search space shown in Figure 19, and result in faster finish time.

The results are shown in Table 13. Basically, the larger the values of k and d are,
i.e., the larger the search space is, the fewer the number of queries required for the
game is, and the longer the time for running the program is. However, the results in
Table 13 do not always seem to show this trend. This is because by using the above
speed-up technique, TPOA stops if a strategy with 8 queries required in the worst case

is found. In other words, TPOA will stop more quickly if the order of the traversal
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sequences of the k queries in each ply is decided carefully. In our program, the order

of the traversal sequences is completely determined by the most-parts heuristic to

choose the k best queries in each ply. From the results in Table 13, it reveals that the

most-parts heuristic is quite outstanding because the running time is shorter when k =

7andd="7.
Table 13. The upper bound derived by our program

Kk d The number of queries in the worst case | Running time (Minutes)
1 1 10 3.96

2 6 10 21.60

3 3 10 28.43

5 4 9 319.47

5 5 9 641.47

7 7 8 13.87

Note that the number of queries, whose value is 8, is obtained by our program

when k = 7 and d = 7. This shows that the TPOA can efficiently obtain optimal (or

near-optimal) results with a small k and d (compared to 5040 valid queries). Hence,

we have the following Lemma 7 evidently.

Lemma 7. For AB game with an unreliable response, there exists a strategy such that

the number of queries required for the codebreaker to obtain the secret

code is at most &.

We can regard Lemma 7 as an upper bound of this problem. In the following

section, we demonstrate the pigeonhole-principle-based verification algorithm to

prove that the lower bound of the game is also 8.

5.3 Pigeonhole-principle-based Verification Algorithm

In our previous study [37], we have proposed a pigeonhole-principle-based fast

backtracking algorithm (PPBFB) to obtain the lower bound of our problem in about 5
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days using an AMD Opteron 1.6GHz PC. Here, the concept of PPBFB will be
reviewed first and then, the reductions of equivalent queries (Technique 3 in Section
3.2.2.3) are also cooperated with PPBFB to accelerate the speed of the verification.
The refined version of PPBFB is called pigeonhole-principle-based verification
algorithm (PPV). Finally, the lower bound is also acquired by PPV in only 12.83
minutes using an Intel Core 2 Duo 3.16 GHz PC.

The concept of PPBFB is to conduct an exhaustive worst-first search. It rates the
lower bound by making use of the extended pigeonhole principle proposed by us [18]
and then backtracks as early as possible to save the search time. The refined version
of PPBFB, PPV, is illustrated in Figure 20. The key idea of PPV is to consider the

sizes of the two sets in the state when the search proceeds. The rectangles in Figure 20

represent the states. @; , is the i-th possible choice among all secret codes made by

the codebreaker at the p-th query. rp max means the class which results in the most
number of queries among 14 classes after the p-th query. Qmax 1s the theoretical lower

bound which means a fewest number of queries required to reach the final state, i.e.,

<{C},¢> or <¢, {C}>, from the current state and h is the lower bound we intend to

verify.

Theoretically, a search algorithm has to explore all valid 5040 secret codes at
each query. However, in fact, PPV only need to explore 1 representative query at the
first query, to expand 20 queries at the second query, and to expand 356.50 queries in
average at the third query due to the equivalence property. For the codemaker, only
the worst case among the 14 classes has to be expanded. The so-called “worst case”
denotes the class which will result in the most number of queries needed by the

codebreaker.
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Get_lower bound ;
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é } gmax : theoretical lower bound

<{C},> or <,,{c}>

Figure 20. The sketch of the PPV algorithm
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The extended pigeonhole principle [18] is employed to estimate the lower bounds
of the number of queries needed among 14 classes. The idea of the estimations of
lower bounds is similar to that proposed in Chapter 2. In other words, the actual
number of queries needed is more than or equal to the most number, Qmax, of lower
bounds among 14 classes. Therefore, our verification program is not necessary to
search the whole game tree. It can backtrack to the parent node to expand other
branches if the condition holds: (p+q, )>h, where we seth=8.

The main idea of the estimation of lower bounds by using the extended
pigeonhole principle is that the query made by the codebreaker in each ply may divide
the elements of the two sets in the current state evenly. Hence, this ideal strategy can
minimize the height of subtree rooted in the current node. That is to say that there
exists a “theoretical optimal” strategy for the codebreaker in the following queries
such that all the elements of the two sets in each state may be divided evenly. The
actual number of queries is thus more than or equal to the value of estimations. Note
that we use the function, Get_lower bound, to rate the lower bounds in Figure 20.
The detailed calculation of the lower bounds, the entire algorithms, and other
improvements can be found in [37][38]. Hence, the details are omitted here.

After the careful implementation of our program based on PPV, The verification
program was run on a dedicated PC equipped with an Intel Core 2 Duo 3.16 GHz
CPU to verify the lower bound required for AB game with an unreliable response. If
we set the value of h, which indicates the lower bound we want to verify, to 8, our
program executed for about 12.83 minutes and the final output is “success!” finally.

In other words, the minimum number of queries is at least 8 in the worst case
without respect to any strategies used by the codebreaker. Note that the upper bound
of this problem is obtained in Lemma 7 as well. Thus, we have the following theorem

which shows that the lower bound as well as the exact bound of the game is 8.
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Theorem 3. For AB game with an unreliable response, 8 queries are necessary and

sufficient to identify a secret code in the worst case.

5.4 Chapter Conclusion

This chapter utilizes two advanced algorithms to address AB game with an
unreliable response. The first one is two-phase optimization algorithm (TPOA). With
the well-designed hashing function and the simple heuristic of evaluation, the results
obtained by TPOA are better than those of the previous work [37]. In other words,
TPOA is more effective and efficient. Note that the upper bound of the game is
declined from 9 to 8 in this refined approach.

On the other hand, another improvement, pigeonhole-principle-based verification
algorithm (PPV), is modified from pigeonhole-principle-based fast backtracking
algorithm (PPBFB). PPV uses equivalent properties to reduce the branching factors at
the first three queries. Although the final outcome is the same as that in [37], the
speed of PPV is faster than PPBFB due to the reductions of equivalent queries.
Moreover, the lower bound provided by PPV is 8 as well.

Fortunately, we have proved that the upper bound of the game matches the lower
bound while its value is 8. Hence, the minimum number of queries for AB game with
an unreliable response is 8. Furthermore, it may be interesting to deal with AB game

with e unreliable responses, where € > 2.
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Chapter 6

Conclusion and Future Work

In this dissertation, some optimization approaches for deductive games and their
variants are taken into account. Section 6.1 concludes with the proposed optimization

algorithms and our contributions. Some future work is mentioned in Section 6.2.

6.1 Concluding Remarks

Two advanced algorithms and a reduction technique for deductive games are
demonstrated in this study. Moreover, two promising algorithms, which are proposed
before, with some modifications are introduced to solve our addressed problem as
well. We summarize our main novel contributions:

(1) A more efficient complete algorithm, which is called depth-first
backtracking algorithm with branch-and-bound pruning (DBB) for
Mastermind in the expected case, is introduced to take the place of
traditional approaches and meanwhile, an admissible heuristic, which can
be applied to various deductive games, is presented as well. From the
experiments, DBB is significantly superior to the traditional algorithms and
an alternative optimal strategy is also obtained finally.

(2) To date, there have been no optimal expected-case strategies for AB game
in formal literature since its appearance. Thus, a refined branch-and-bound
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€)

(4)

algorithm with speed-up techniques (RBB) is demonstrated to deal with this
problem. A tactic for playing AB game optimally in the expected case is
eventually attained by utilizing RBB and in addition, the corresponding
expected number of queries, 26274/5040 ~ 5.213, is derived.

A sophisticated method, called structural-reduction approach (SR), which
aims at explaining the pessimistic situation in this game, is presented to
investigate 3xn AB games. After careful theoretical analyses, optimal
strategies for the codebreaker in the pessimistic situation are discovered.
Furthermore, a worthwhile formula for calculating the optimal numbers of
queries required for arbitrary values of n is derived and proven
successfully.

Two algorithms, which are named as two-phase optimization algorithm
(TPOA) and pigeonhole-principle-based verification algorithm (PPV), are
surveyed for solving AB game with an unreliable response. The purpose of
TPOA is to discover an upper bound of the required number of queries in
this game while PPV aims at identifying a lower bound of it. Fortunately,
experimental results show that the upper bound equals the lower bound and
then, the exact bound of the number of queries needed, whose value is 8§, is

achieved.

From the survey of related papers, it reveals that the search space of many games

and optimization problems are often so huge that traditional search algorithms are not
able to explore it efficiently. Of course, there were plenty of pruning techniques,
which were proposed before. However, slight inaccuracy of the measures of these

pruning techniques may usually lead to the poor results that are far from the optimum.

In this study, our proposed search algorithms, which are replied upon the

admissible heuristics, have contributed success to various deductive games. Note that
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in general, the admissible heuristics can be regarded as a kind of theoretical pruning
techniques since the pruning occurs but does not affect the correctness of search
algorithms. In other words, the results of the search algorithms are accurate if the
pruning techniques are based on theoretical analyses. Hence, it may be a trend to
combine search algorithms with theoretical pruning for solving those complicated
problems.

On the other hand, other optimization problems such as coding theory, circuit
testing, differential cryptanalysis, and additive search problem may also be solved by
taking advantage of our demonstrated methods with modifications in the future. We
hope that the research results may assist other scientists with the development of their

concerned issues.

6.2 Future Work

There are still some open issues regarding our problem domain. The optimal
strategies of deductive games with much higher dimensions, which are called mxn
AB games while m > 4, are still unknown. It is interesting to investigate them because
they may become NP-complete problems or harder problems if the value of m is
getting larger constantly. Then, the boundary value of m is significant as well. Besides
the original versions of much higher dimensions, other variants of deductive games
are also worth studying such as static deductive games or deductive games with
multiple unreliable responses. From the progress of research, 3xn deductive games in
the expected case and 4xn deductive games in the worst case may be solved
completely in the near future.

There are other important problems such as the Renyi-Ulam game and the
counterfeit coin problem, whose styles are similar to deductive games. In fact, the

Renyi-Ulam game has been widely surveyed in the fault-tolerance area and
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meanwhile, the counterfeit coin problem has been discussed constantly in the
information-theory area as well. However, there are still a lot of open issues about the
two significant problems. These open questions are likewise worth studying in further

detail for discovering their solutions.
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Appendix A. Equivalence Transformations for

AB Game at the Second Query

The following equivalence transformations for the second query of AB game

transform the 209 codes into their corresponding representatives.

Table 14. Equivalence transformations

Each
Order | Representative Equivalence transformations
query
1 0123 - -
0123 4546 7189 01 2 3
0213 | C= ,P=
0 31245467289 0 3 1 2
012 3 456 7289 01 2 3
0321 | C= ,P=
0213 456 7289 0 2 1 3
5 0132 1023 | C = 0123 456 7289 P 01 2 3
23014567 89) (2301
0123 456 7289 01 2 3
2103 | C= ,P=
1 302 456 789 1 3 0 2
012 3 456 7289 01 2 3
3120 | C = ,P=
1 2 0 3 456 7 89 1 2 0 3
3 4567 - -
012 3 456 7289 01 2 3
0312 | C= ,P=
013 2 456 7289 013 2
01 2 3 456 7289 01 2 3
1203 | C= ,P=
3012 456 7289 301 2
012 3 456 7289 01 2 3
1320 | C = ,P=
201 3 456 789 2 01 3
4 0931 2013 | C = 012 3 456 7289 p_ 01 2 3
3021456789 (3021
012 3 456 7289 01 2 3
2130 | C= ,P=
1 023 45 6 789 1 0 2 3
012 3 456 7289 01 2 3
3021 | C= ,P=
20 31 456 789 2 0 3 1
01 2 3 456 7289 01 2 3
3102 | C= P =
1 03 2 456 789 1 0 3 2
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Appendix B. Optimal Strategy for AB Game in
the Expected Case

Prior to introducing the optimal strategy of AB game, its representation will be
illustrated first. The lower-case alphabets, a, b, c, ..., m, n, represent the 14 responses

(hints), as shown in Table 15.

Table 15. The mapping between responses and representative letters

Response | Representative letter Response | Representative letter
[4,0] a [1,1] h

(3, 0] b [1, 0] i

[2,2] c [0, 4] J

[2,1] d [0, 3] k

(2,0] e [0, 2] 1

[1,3] f [0, 1] m

[1,2] g [0, 0] n

Three kinds of tokens will appear in the strategy. The first kind is four-digit
Arabic numerals, which means the query made by the codebreaker. The second one is
lower-case letters mentioned above, which indicate the responses. The last kind is
parentheses. The tokens in parentheses refer to the optimal tactic of the state. In other
words, it is an optimal game tree of that state. The tactic is constructed with a
recursive form and can be treated as a game tree. For example, suppose that a game
tree depicted in Figure 21 is given. Then its corresponding representation will be
“4872 (7248 (a) 4287 (8274 (a)a)a)”. Furthermore, it is easy to reconstruct

the game tree from its representation with depth-first ordering.
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4872

{7248} @

a

7248

4872 (7248 (a)f4287 (£8274 (a)a)a)

Figure 21. The transformation between the game tree and its corresponding

representation

The derived optimal strategy of AB game in the average case is shown partially
as follows due to space restrictions. In order to clarify the levels, we use an indent
structure. We have established a website (http://www.csie.ntnu.edu.tw/~linss/

ABgame/optimal strategy.html) that includes the full text of the optimal strategy.

0123 ( n 4567 (15689 (1 7498 ( j 8974 ( ¢ 9874 ( a )
a)

£ 8794 ( f 9748 (a )
a)

c 7894 ( f 7948 (a )

i 9478 (a)
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101

k

=

—h

8495 ( 1

8496 ( a

8975 ( j

8954 ( j

6894 (

—h

7958 ( a

6798 (1

)

7895

9875

9876

9854

7896

8796

9758

9845

9458

8976

9846

)

8945

(a)

(a)

(a)

(a)

(a)



a)
c 6498 ( j 8946 ( a )
a)

b 6978 (a )

/I The full text of the optimal strategy is included at http://www.csie.ntnu.edu.tw/

~linss/ABgame/optimal_strategy.html.
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