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Abstract—The list decreasing heuristic for the vertex
cover problem is an online vertex covering algorithm. An

upper bound JA 12+3/2 had been proposed on the ap-
proximation ratio for it, and a graph had also been given

to reach a lower bound of /A /2+1/2. In this paper, we
refine the techniques of previous researchers, and con-
struct a new type of graphs which can enhance the lower

bound to /A /2+1 , and all the graphs can be categorized
into a group. Then we proposed a modified algorithm to
obtain atighter bound and proveit with an example.

Index Terms—approximation algorithm, list decreas
ing heuristic, vertex cover problem.

I. INTRODUCTION

The minimum vertex cover problem is the op-
timization problem of finding a minimum cardinal-
ity vertex cover for a given graph. Let G = (V, E)
be an undirected, unweighted graph. A set of verti-
ces C C Vis called a vertex cover if for any edge in
E at least one of its endpoints is contained in C.

The vertex cover problem is a famous NP-hard
optimization problem. Currently, there is no poly-
nomial time algorithm to solve it optimally. Several
approximation algorithms for the vertex cover
problem have been proposed with various per-
formance guarantees. Cormen et al. [1] described a
very simple approximation algorithm based on
maximal matching which gives an approximation
ratio of 2.

Demange et al. [2] proposed the online vertex
covering problem. The input is not entirely known
at the beginning, vertices are revealed one by one

and a decision of selection must be taken for each
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revealed vertex. The scanned vertex is selected if
and only if it has at least a nonselected already re-
vealed neighbor.

Some approximation algorithms are based on a
static ordering of vertices determined by their de-
grees and the vertex degrees are not updated in the
process. An interesting model is what Avis et al.
called the list heuristic in [3]. This kind of algo-
rithm scans the vertices one by one in a fixed given
order called a list and takes a definitive decision of
selection for the currently scanned vertex. Avis et al.
[3] proposed the list decreasing heuristic (Delbot
called it ListLeft [4]) that chooses vertices in order
of decreasing degree, selecting a vertex if it is ad-
jacent to an uncovered edge. They proved that its

approximation ratio is at most

A Ja

+ls—+=,
2JA -1 2 2

where A is the maximum degree of the graph. They

also showed that a lower bound on the approxima-
tion ratio is VA /2+1/2.

Since less information is available at each step,
the list decreasing heuristic ListLeft performs
worse than the greedy algorithm which repeatedly
selects a vertex adjacent to the largest number of
uncovered edges. On the other hand, Delbot et al.
[4] introduced a better list heuristic algorithm Lis-
tRight which treats vertices in increasing order of
their degrees.

In this paper, we obtain a tighter upper bound
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for the list decreasing heuristic in [3]. Moreover,
we construct a group of graphs to show that the list
decreasing heuristic has a lower bound of A /2+1.
The results is better than that of Avis et al. [3],
which is A /2+1/2

This paper is organized as follows. Section 2
briefly reviews the terminologies. Section 3 pro-
poses a tighter upper bound for the list decreasing
heuristic algorithm. Section 4 constructs a group of
graphs in recursion form. Lastly a brief conclusion

1s made in Section 5.

II. PRELIMINARIES

A. Vertex cover problem
A vertex cover is a set of vertices in a graph.

Given an undirected graph G = (V, E), a set of ver-
tices CCV is called a vertex cover if for any edge
in E at least one of its endpoints is contained in C.
In other words, given G, a vertex cover of G is a set
of vertices V' such that V'CV, V(u, V)EE, UV’
or VE V'or both.

For any vertex v; € V, we denote N(V;) the set
of neighbors of v; and d; = [N(v;)| = d(V;) the degree
of v, i.e. its number of neighbors. Let n represent
the number of vertices, m the number of edges, and
/\ the maximum degree of G. Assume the vertices
are labeled such that A=d;, = d, = ... = d,. Let
Cp be a vertex cover and opt denote the size of the
minimum vertex cover, and then |Cpl/opt denotes

the approximation ratio.

B. List heuristic algorithm
Demange et al. [2] proposed an online vertex

covering algorithm. The scanned vertex is selected
if and only if it has at least a nonselected already
revealed neighbor. List heuristic algorithm is a kind
of online vertex covering algorithm. Any permuta-
tion of the n vertices of V is called a list. The list
may be sorted according to the vertices’ degrees.
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The vertices are revealed one by one from the list.
The algorithm scans the list in real time and makes
a decision of selection or not for the currently
scanned vertex immediately. The vertex degrees are
not updated during the process.

List decreasing heuristic algorithm was pre-
sented by Avis et al. [3], in 2007, which is called
ListLeft in [4]. It scans vertices in order of de-
creasing degree (from left to right) and selects a
vertex if it is adjacent to an uncovered edge. Delbot
et al. [4] modified the list decreasing heuristic al-
gorithm to ListRight heuristic algorithm. They scan
the list from right to left. The scanned vertex is se-
lected if and only if at least a right neighbor is not
selected.

In this paper, we deal with ListLeft and analyze

its bounds on the approximation ratio.

C. Linear programming
An important tool in the analysis of approxima-

tion algorithms is a linear programming relaxation
of the related integer programming problem, and
was first used by Lovasz [3]. The traditional ap-

proach is shown in Figure 1.

Integer Linear —» Linear
Programming | Relaxation”|  prooramming
T Approximation l Solver
Integral ‘Rounding Fraction
Solution b Solution

Figure 1. The traditional approach in the integer
linear programming problem.
The following definition is a linear program-
ming relaxation for the vertex cover problem.
For any vertex cover C of a graph G = (V, E),
we denote X, the weight of vertex v, and define
1, vOC,

X:{Xv}vev as follows : X, = {0 ac
, vOC,
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where X is a 0 or 1 valued feasible solution for the
linear programming, and conversely every 0 or 1
feasible solution corresponds to a vertex cover for
G.

For any edge e=UvEE of a graph G = (V, E), we
denote Y. the weight of edge € and define
Y={VYe}ece as follows : ye =1/d(u) or 1/d(V) or 1/A
depending on the designed algorithm, where Y is a
fraction valued feasible solution for the linear pro-
gramming. This is an assignment of nonnegative
weights to the edges of G such that the sum of the
edge weights at any vertex is at most one. Any
Y={Ye}ece that satisfies the conditions above is

called a fractional matching of G.

We define the size of X as |X|= Y x, , and clearly

viv

|X|=|C|. We define the size of Y as [Y|= Xy, . In the
glE

vertex cover problem, we try to minimize the

summation of x,, where VEV.

min Y X,
ay;

st. x,tx, =21 0O(uv)UE,
Xy=0 OvOV.

The dual is to maximize the summation of y.,
where eEE.
max > Y,
&

st. Y y.<1 OvOy,
eJo(v)

Y20 [OelE

For any graph G, let opt be an minimum vertex
cover of G, Cp be any vertex cover of G and Y be

any fractional matching. Clearly

[Col =[X| Zz opt = [Y|=3Xy..
aE

Using the above facts, Avis et al. obtained some

bounds on the approximation ratio for the ListLeft
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algorithm.

IIT. AN ANALYSIS FOR THE UPPER BOUND
ON THE APPROXIMATION RATIO

Given a graph G = (V, E), let d; denote the de-
gree of vertex V;, and assume the vertices are la-
beled such that A=d;, = d, = ... = d,. The maxi-
mum degree is /\ = d; and the minimum degree is
dn. The list decreasing heuristic algorithm [3] is

shown below.

Algorithm ListL eft.

Input : Any graph G and any associated list
L=<v,V,...,V,> sorted by decreasing degrees, i.e.
A=d=zd,=... =0,
Co =Q; // Initially Cp is empty.
For i=1 to n-1 //Scan the list L from left to right.
{
Let v; be the currently scanned vertex;
Let R, denote the set of edges incident to Vv; but not
incident to any vertex already in Cp;
If R is not empty, then Cp := Cp U{ V; };
¥
Return (Cp);
[]
The above algorithm outputs a vertex cover Cp
in n-1 steps by scanning the vertices one by one. In
[3], Avis et al. constructed a dual feasible solution
Y={VYe}eck as follows. Let p be the minimum index

such that Epjdi >m. {Vi,Vo,...,Vp} 1S @ minimum car-
i=1

dinality set of vertices. Y is obtained by initially

setting vy, :% for each edge e. For each i=p+1 for

which V; is selected by ListLeft, they choose an ar-

bitrary edge e from R and reassign it a weight
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Ye = di Now a fractional matching Y={Y.}ece of G

can be obtained from Cp.
In the following, we will refine the techniques
of Avis et al. [3] and lida Hiroshi [5, 6] to derive

the following theorem.

Theorem 1.

Let Cp be the solution obtained by ListLeft and
opt be the size of the optimal solution, then

A, (24 +1)

aa -1, 2*4dn
A_l_dn .

Cp |<opt*

Proof.

In the selected part Cp obtained by ListLeft, we
choose the minimum p nodes Vi, Va, ..., V, such that

the degree sum of the p nodes is just greater than or

equal to m, 1. e. idi >m. We then let

i=1
s=[Cp|-

First, we focus on the first p nodes. The degree
sum of the p nodes will be less than or equal to
m-1+/\ as shown below.

d,y =1

Soditd, +.+d sm-l

d, =4
Sodtd, +o+d +d sm-1+A

Second, we focus on the following s nodes. The
degree sum of the s nodes will be less than or equal
to m-d, as below.
d=m and 3d =yd + Sd+ yd =2m,

i=1 i=1 i=p+l i=p+s+l

1Mo

<m-d,

Sodp, tetd <
We then apply the Cauch-Schwarz inequality
dpis are positive

d,, then

used in [3]. Since dpi, dpio, ...,

integers with sum at most m-
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Let opt be the size of the optimal solution. Now
we construct a different fractional matching
Y={Ve}eck as follows. Let R denote the set of edges
incident to V; but not incident to any vertex already
in Cp. We select an arbitrary edge e from R and

assign it the weight y,=—. Each of the other

edges in E is assigned the weight % = dl Then
1
P1 PSS 1 m|C
optzrye=y—+ ¥ -+ 1CD]
i=1di  i=p+1di d
p> , s& . m|Cp|
_ p? Lmol+A s? Lm-dn “ m-|Cp|
m_1+A 2d1 m_dn Zdl dl
_m-1+A m-d,
2d, 2d,

Using the arithmetic-geometric mean inequality,

§ 2 2m-2[Cp|-(m-1+A)-(m-d
opt=2 /P42 S_+ ICo|-( )—(m-dp)
20, 2d,

_[2 | D| 1-A+d,
+ —_—
q (pts)- q, 24,
<[00l o o | g
opt———=(|Cp -
pt-——" 2 (1 Cp |5 ),
A A-1-dy
|Cp |<opt*
D V2 —1 2420 -2
copr_ B, (20 +1)
J2A -1 4+ 2 +4d,
A_l_dn. (1)
[]

The equation (1) is more precise than the result
in [5], but not good enough. So we propose a tigh-
ter upper bound for ListLeft in the following theo-
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rem.

Theorem 2.

Let Cp be the solution obtained by ListLeft, k
be the number of vertices with maximum degree,
and opt be the size of the optimal solution. If k <n,
then

\CD\< n-1 n-1 < n-1

ot Xye I, m-(-D  @-1-k7  m-n+l+k
i=1di dy 2m-kA-d, A

Proof.

In ListLeft, we divide the n nodes into two parts,
the selected part and unselected part. The selected
part is equal to the vertex cover Cp. In the selected
part we have at most n-1 nodes and remain at least
one node to be unselected. We can write the equa-
tion as follow.
|Cp |<n-1.

)

Now we construct a fractional matching Y =

{LL LL }. The total weight of the m
d d, d,, d d
edges can be written as follow.

11 L ,m-(n-n__" 1 Lm-(n-1
Ve=—F+—F . F—F—— ==y
€ d dy dn—1 d i= 1d| d

" opt 2 2ye

n-1 —(n-
Oopt= dl PN L) én D

i=1Y4i 1 (3)
d+d, +..+d +d, =2m.
Ifdi=d,=...=dc=A and k<n, then
d.+.+d,_, =2m-kA-d,.

We use the techniques proposed by Avis et al.
[3] to reduce the formula as follows :

1 1

112
+ o+ - (n-1-k)

dic+1 dn-
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11 1 m-(n-1)
opt =2y =—+—+..+ +
d, d, dn— d,
2 (1
,_(-1-%  m-(n-1-k)
2m-kA-d,, A
_ (n-1-k)2 L mon+itk
2m-kA-d, A
1 1
— <
opt  (n-1-k)? L m-n+l+k

2m-kA-d, A @

From (2) and (4), we can get the approximation
ratio as follows :
n-1

(n-1-k)2 L mon+i+k
2m-kA-d, A

|CD|< n-1_ n-1
ot Tve NIl m-(n-p

i=1di dy

(3
[]

Let us show an example in Figure 2. Note that
the total number of vertices N=25, the total number
of edges mM=84, the maximum degree A=16 =N,
the number of vertices with maximum degree k=4.

This example can be generalized to let N be an ar-

bitrary value.
We have

(m-1-k)2  m-n+1+k
opt =

2m-kA-d, A
__(25-1-4)7  84-25+1+4 _
2%84-4*16-4 16 ’
|Cplsn—-1=24,
ICpl 24 _
opt 8

Now we find the lower bound formula in [3],

NI

We can arise t0—+1——+1—

We can find that the upper bound on the ap-
proximation ratio using (5) is just equal to the low-
er bound +A /2+1 in [3]. This means we have
found an example to close the gap between the two
bounds.
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Let us deal with the case that all vertices in the

graph have the maximum degree.

Degree:N2

Group A

@

)
AN
e

£L7

L
w‘%ﬁ SN2
O A
Degree=N-+1 e K

S

=

R
.»4%

SN sLOSSS
{ SIS Z
T e
b

#=N

GroupB (5] CEOHEO oW

et \\J/

GowpC Bl -4 P4 #-N
Degree=N \\ //
Group D W #=1
A B C D
( 1 10 1M
Vertex Vi Vo Vi Vi Vs Vg V7 Vs Vo Vig Vi Via Vi3 Vig Vis Vig Vis Vis Vie Vag Va1 Vi Va3 Vi Vs
Degree 16 16 16 16 5 5 5 5 5 5 5 5 5 5555555 5555 4
WelghtOf 1/16  1/16 1/16 1716 1/5 1/5 15 VS U5 15 15 U5 15 15 15 15 15 15 15 15 15 15 15 15
thick edges
VEn= 4+ 16+ 4+ 1=25
m= 16%4+1%16+1%4+0%4=84
m 1 1 1 64 20
XY =—*16%4+-*16+—-*4=—+—=8
= 16 5 5 16 5
Figure 2. An example using N=4.
Coroallary 1. ICol_n-1_n-1_(n-DA
opt  Xye M m
Consider a graph G=(V, E) with k=nand d, = A (6)
d, = ... =dy = A. Let Cp be the solution obtained ]
by ListLeft applied on G and opt be the size of the
Example.

[Col_n-1_(n-DA
opt ~ Xy, m

optimal solution, then

Proof.
Ifd=d =...=d,=A and k = n, then each
edge ¢ € E can be assigned the weight y. = 1/A,

and opt=3Yy, :%. From (2), we can get the ap-

proximation ratio as follows :
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Let us show the results of complete graphs in
Figure 3. In complete graphs, if we use maximum
degree to express the approximation ratio then we
will get bigger ratio when n is bigger. So we can
get a tighter bound,

[Col (M=DA_(n=-D(n=-2) _,_
opt ~  m n(n-2)/2

2

n
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in our formula than that of Avis et al. [3].

The exact approximation ratio in the complete

Approximation Ratio

graphs is always %p[))t' <(n-1)/(n-1) =1.

7.000
6.000 M
Ty M
5.000 S —
/ﬂ/ﬂ/ﬂ/u £+l= e Y
4,000 //Aﬁ/ﬁ/&' W 2 2
3.000 -
)/r/\?/ Our Ratio =2 7:’.
2.000 T
o A
I e e e
Exact Rario =1
0.000 b
3 o0 15 70 a5 Vertex Number
Figure 3. The result of complete graphs using n=3 to 100.
Let us deal with the case that the graph has t |Cplsn-t. (7)

vertices with minimum degree 1 or 0.

Corollary 2.
Consider a graph G=(V, E) withd, =d, = ... =
dk = A, k < n, and dn_t+1 = dn_t+2 = .= dn =1 or O,

i.e., there are t vertices with minimum degree 1 or
0. Let Cp be the solution obtained by ListLeft ap-
plied on G and opt be the size of the optimal solu-

tion, then

|CD|< n-t _ n-t < n-t

ot Tve WAL . m-(n-H @-t-k7  m-n+r+k
i=1 d d; 2m-kA-t A

Proof.

In ListLeft, we divide the n nodes into two
parts, the selected part and unselected part. The
selected part is equal to the vertex cover Cp. If
there are t vertices with minimum degree 1 or 0,
then all the t vertices will be put into the unse-

lected part. So we have
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The weights of the edges can be assigned si-
milarly to those in the proof of Theorem 2.

We construct a fractional matching Y =

{LL ! ,L,...,L}.Then
d d, d. d d
-(n- -t —(n-
Ye:L+L+...+ ! +m (n t)::nzl+—m (n t)
di dn— dy i=1 i dy
11 1, m-(n-t)
=ttt
2Ye a g da )
nt]l  m-(n-t)
=5 —+—— 7
Edi d,
T opt 2 2ye
nt1  m-(n-t)
Oopt= > —+—— =
P Eldi d

dl +d2 +...+dn_1 +dn =2m

Ifd1 =d2= =dk=A, dn—t+1 =dn—t+2= =dn
=1 or 0, and k <n, then
dg+q +...+dp—t =2m-kA -t.
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We use the techniques proposed by Avis et al. n=17, the total number of edges M=18, the maxi-
[3] to reduce the formula as follows :

mum degree A=3, the number of vertices with

L, . (-t- k)2 maximum degree k=8, the number of vertices with
dk+1  dp—y  2m-KA-t,

minimum degree t=6. In this bipartite graph,

opt23ye =t 4w 41 M"Y

|IChlsn-t=17-6=11
d  dy dn—¢ d
R} (n-t-k)2 L, m-(n-t-k) Now we assign the value 1/A = 1/3 as the
" 2m-kA-t A weight of the thick edges in Figure 4. The other
_(n -t-k)? Lmon+t+k edges are also assigned a weight of 1/A = 1/3.
2m-kA-t A : Case 1 : Using Equation (9), we have
1 1 —t—1)2
< =(n t—k) m—n+t+k=
opt (n—t—k)2+m—n+t+k opt=2Ye Im kbt A 6.3,
2m-kA-t A . _
® [So ] D7t 11/6.51.692.
From (8) and (9), we can get the approxima- opt XY

tion ratio as follows : Case 2 : Using the upper bound in [3],

Cpl_n-t____n-t n-t Col 8 4123 4i=20175
opt “Xye ML m-(-0) (n-t-k)?  m-n+t+k opt ~ 2J/A -1 243 -1 '
i= d; d 2m-kA-t A .
= : " ©) Case 3 : Using the upper bound we proposed,
L] ‘CD‘3£+1:£+1:1.866
opt 2 2 ’
Example.
o ‘ We can find 1.866 < 2.2175. We have a tighter
Let us use the bipartite graph as an example in

‘ _ bound /A /2+1than those of Avis et al. [3].
Figure 4. Note that the total number of vertices

Group B Group C Group D
Degree== Degree=2 Degree=1
V=n=6+11=17 k=2+6=8
m=2#34242+6%1=18 =6
B A C D
nan i I
Vertex Vi Vg Vi Vy V3 Vg Vs Vg Vo Vi Vi Vi Viz Vi Vis Vi Vg
Degree 303 a3 3 : 7 z

3 222 222 1 11 111

VIR VICH VICHN VISR VI P

Weight of thick edges 13 13
Figure 4. An example using maximum degree A=3.
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IV. ANEW GROUP OF GRAPHS IN RECUR-

SIVE FORM TO MATCH THE LOWER BOUND

Reducing the gap between the lower bound
and upper bound is one of the main challenges
facing the researchers. In this section, we propose
a new group of graphs which can enhance the
lower bound on the approximation ratio for Lis-
tLeft proposed by Avis et al. [3].

The graphs can be represented as a recursion
structure shown in Figure 5. The maximum degree
of the graph is N* sova= N then the lower

bound on the approximation ratio will be
LkazN—kH. It means that the approxima-
2N 2
tion ratio of the lower bound is also come up to
VA /2+1.
Avis et al. [3] obtained an upper bound
JA /24+3/2 which can be represented in more pre-

cise form as +1. If we let VA= N¥ then

A
23/n -1

N +2N* -1

N The

the upper bound in [3] will be

Degree=N**

A N N = N * N¥I
B N1 N* = N x N
C N1 N =1 * N¢
D % 1 =1 * 1

 Degree=Ni1

approximation ratio of our graphs can be written

N +2N* :
a8 —— S The gap between the two bounds is

N2k 1

T 4-2/NX

N?+2N-1 N +2N* _
2Nk -1 2Nk ANZ* — 2Nk

and 1imﬁ=0.25. It means the gap between

N-oow 4 —

the upper and lower bounds is come up to 0.25

when n tends infinity.

Example.

In Figure 6, the maximum degree of the graph
1S Nz, so+/A =N, then its lower bound on the ap-

N2+2N _ N

proximation ratio will be =5 +1. It means

that the approximation ratio of the lower bound is
come up to A /2+1.

Degree=N"*

Group A

N\ Neseee o

N2 sets
~ Degree=A L¢
Gro N“ sets
1 set

|Cp [ENFNS+N = N*+2N¢
opt=N*  +N*=2N*
Ratio = N*/2+1

Figure 5. The structure of the example groups.
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Degree=N2

1 set

egree¥N+1f /" Degree=Nt+1

Degree=N_ - -
Gro “m 1 set

Group Degree Total Nodes= # * Set

A N? N = N=* 1 ICp [EN+N>N= N>2N
B N+1 N> = N * 1 opt=N  +N=2N

C N+1 N =1 * N Ratio = N/2+1
D N 1 =1 * 1

Figure 6. An example of graphs with maximum degree N*

IV. CONCLUSION

Jn /2+3/2, and it can be represented in more pre-

After careful consideration and derivation, we cise form as A +1. The difference between
obtain the equation (1) in Theorem 1. The result is 2JA -1
better than that of lida Hiroshi [5, 6]. Furthermore, the two bounds and the exact upper bound
we have proposed a new group of graphs which
prop grotp o1 gtap isl—m. Iida Hiroshi [5] used the lemma
can come up the lower bound to /A /2+1. The re- 4 8A-2

sult is also better than that of Avis et al. [3]. The

proposed by Avis et al. [3] to obtain the following

gap between the lower bound and upper bound is ~ formula :
come up to 0.25 when n tends infinity. Cp |< opt* A, V20 +1
Vn-1 4

We have proposed a tighter bound formula of
the list decreasing heuristic for the vertex cover
problem. We also give an example to show the re-
sult of the upper bound is equal to A /2+1. The
bounds of ListLeft derived by some researchers
and us are shown in Figure 7.

In [3] the authors proved that an upper bound

on the approximation ratio of ListLeft is
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(10)
Furthermore lida Hiroshi [6] got the following

equation:

|Cp |< opt * 2
V28 -1 2428 -2 where q = d, . (11)

lida Hiroshi [6] indicated that, when the max-
imum degree (A) is smaller than 19, the above

upper bound is better than that of Avis's. Finally,
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we summarize our and previous results in Table 1.

ee}
\CD\sopt*(£+é) n [3].
2 2
A 2h+1
Cp |<opt* + in [6],
| D| op \/ﬁ—l 4 []
when A 219 the result is worse than |Cp |< opt *( +1) in [3].
TR 24A -1
1773
4 8A-2 .
We propose an upper bound (in Theorem 1)
A (20 +1)
Cp|<opt*
|Cpl=op %1, 2+4dy
A-1-dj
when A >19 the result is worse than |CD|SOpt*(2\E—1+l) in [3].
_‘{_ A more precise form |Cp |< opt *( a +1) in|3]
. b= 2/a-1 '
Cplsoptr—2—+ 2B g)
N2A -1 4
h h Iti h Cp|<opt* +1) )
when A <19 the result is better than |Cp [<0p (2\E—1 ) in [3]
1 We propose an upper bound (in Theorem 1)
4-2/[A A (W24 +1)
Cp|sopt*
©ol Jan-1,, 2+4dy
A-1-d, A
i Cp < opt * +1)
when A <19 the result is better than | Cp [< 0P (2\/3_1 ) in [3].
We propose an upper bound (in Theorem 2)
|Cp |<opt* !
(n-1-k) +m—n+1+k
2m-kA-d, A

JA

lower bound C, |>opt *(T +1)

We propose a new group of graphs (in Section 4) which enhances the

N/
C.|zopt*(X2 +-
|Cp | ID(2 2)

Avis et al. [2] proposed a graph to show the lower bound is at least

Figure 7. The bounds of ListLeft.
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Table 1. Comparison of the results with previous work.

Researcher Main ideas

The results of the bound equation

s 1 1
opt=23 Y, = Z—+Z(m—8)

. Cp [sopt* +1
Avis et al. [3] @ mes & m s oS TY
>+ =t —
m A m A A
_P1 .51 m-Cp
opt=3yYe=> —+ 32—+ e
lida Hiroshi [5] =G a8 Cplsoptr 2+ Y207
ida Hiroshi D=
p2 +i+m_CD V20 -1 4

>
m-1+A m A

t>5ye= XL+ m-cp)
opt2Yye= 3 —+—-(m-Cp
i=1di A

Cp® , 2(m-Cp)
2m-g 2A

lida Hiroshi [6]

>

where q=d,

|Cp | opt*

A q
Van -1 2428 -2

A W20 +1)
_al s 1 m-Cp | |Cp|< opt* +
Our result in Theorem 1| OPtZ 2 Ye = |§1d_ + |§1d_ "4 = Va1, 2+4dy
' ' : A-1-dp
1 1 1 m-(n-1)
23y = —+—+. . t— -
opE e d1+d2+ +dn—1+ d |Cp |< opt * zn :
Our result in Theorem 2 g (n-1-k)? m-(n-1-K) 2(n—11<:<)d N m—ngl+k
“2m-kA-d, A m-X58-Cn
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