
Loaders and Linkers

Chapter 3

System Software
An introduction to systems programming

Leland L. Beck

1

Introduction

 To execute an object program, we needs
Relocation hi h difi th bj t th t it b» Relocation, which modifies the object program so that it can be
loaded at an address different from the location originally specified

» Linking, which combines two or more separate object programs
and supplies the information needed to allow references between
them (Section 2.2.2)

» Loading and Allocation, which allocates memory location and g , y
brings the object program into memory for execution (Section 2.3.5)

2

Overview of Chapter 3

 Type of loaders
assemble and go loader» assemble-and-go loader

» absolute loader (bootstrap loader)
» relocating loader (relative loader)relocating loader (relative loader)
» direct linking loader

 Design optionsg
» linkage editors
» dynamic linking
» bootstrap loaders

3

Assemble-and-go Loader

 Characteristic
the object code is stored in memory after assembly» the object code is stored in memory after assembly

» single JUMP instruction

 Advantage Advantage
» simple, developing environment

 DisadvantageDisadvantage
» whenever the assembly program is to be executed, it has to

be assembled again
» programs have to be coded in the same language

4

Design of an Absolute Loader

 Absolute Loader
Advantage» Advantage

– Simple and efficient
» Disadvantageg

– the need for programmer to specify the actual address
– difficult to use subroutine libraries

P L i Program Logic
» Next slice

5

Fig. 3.2 Algorithm for an absolute loader

Begin
read Header recordread Header record
verify program name and length
read first Text record

‘while record type is not ‘E’ do
begin
{if object code is in character form, convert into internal { objec code s c a ac e o , co e o e a
representation}
move object code to specified location in memory
read next object program recordread next object program record
end

jump to address specified in End record

6

end

Object Code Representation

 Figure 3.1 (a)
each byte of assembled code is given using its hexadecimal» each byte of assembled code is given using its hexadecimal
representation in character form

» easy to read by human beings

 In general
» each byte of object code is stored as a single byte
» most machine store object programs in a binary form
» we must be sure that our file and device conventions do not

cause some of the program bytes to be interpreted ascause some of the program bytes to be interpreted as
control characters

7

A Simple Bootstrap Loader

 Bootstrap Loader
When a computer is first tuned on or restarted a special» When a computer is first tuned on or restarted, a special
type of absolute loader, called bootstrap loader is executed

» This bootstrap loads the first program to be run by the
computer -- usually an operating system

 Example (SIC bootstrap loader)
» The bootstrap itself begins at address 0
» It loads the OS starting address 0x80
» No header record or control information the object code is» No header record or control information, the object code is

consecutive bytes of memory

8

Fig. 3.3 SIC Bootstrap Loader Logic

Begin
X=0x80 (the address of the next memory location to be loaded
LoopLoop

AGETC (and convert it from the ASCII character code to the value
of the hexadecimal digit)
save the value in the high-order 4 bits of Ssave the value in the high order 4 bits of S
AGETC
combine the value to form one byte A (A+S)
store the value (in A) to the address in register Xstore the value (in A) to the address in register X
XX+1

End
GETC Aread one character

if A=0x04 then jump to 0x80
if A 48 h G C0~9 : 48

A~F : 65

if A<48 then GETC
A A-48 (0x30)
if A<10 then return

9

A A-7 (48+7=55)
return

Relocating Loaders

 Motivation
efficient sharing of the machine with larger memory and» efficient sharing of the machine with larger memory and
when several independent programs are to be run together

» support the use of subroutine libraries efficiently

 Two methods for specifying relocation
» modification record (Fig. 3.4, 3.5)
» relocation bit (Fig. 3.6, 3.7)

– each instruction is associated with one relocation bit
– these relocation bits in a Text record is gathered into bit masks– these relocation bits in a Text record is gathered into bit masks

10

Modification Record

 For complex machines
 Also called RLD specification Also called RLD specification

» Relocation and Linkage Directory

Modification recordModification record
col 1: M
col 2-7: relocation address
col 8-9: length (halfbyte)
col 10: flag (+/)col 10: flag (+/-)
col 11-17: segment name

11

Relocation Bit

 For simple machines
 Relocation bit

Text record
» 0: no modification is necessary
» 1: modification is needed

Text record
col 1: T
col 2-7: starting address
col 8-9: length (byte)
col 10 12: relocation bits

 Twelve-bit mask is used in each Text record

col 10-12: relocation bits
col 13-72: object code

 Twelve-bit mask is used in each Text record
» since each text record contains less than 12 words
» unused words are set to 0
» any value that is to be modified during relocation must

coincide with one of these 3-byte segments
e g line 210

12

– e.g. line 210

Program Linking

 Goal
» Resolve the problems with EXTREF and EXTDEF from different» Resolve the problems with EXTREF and EXTDEF from different

control sections

 Linking
» 1. User, 2. Assembler, 3. Linking loader

 Example
P i Fi 3 8 d bj t d i Fi 3 9» Program in Fig. 3.8 and object code in Fig. 3.9

» Use modification records for both relocation and linking
– address constant
– external reference

13

Program Linking Example

Program A Program B Program C
Label Expression LISTA, ENDA LISTB, ENDB LISTC, ENDCp , , ,
REF1 LISTA local, R, PC external external
REF2 LISTB+4 external local, R, PC external
REF3 ENDA LISTA l l A t l t lREF3 ENDA-LISTA local, A external external
REF4 ENDA-LISTA+LISTC local, A external local, R
REF5 ENDC-LISTC-10 external external local, A
REF6 ENDC-LISTC+LISTA-1 local, R external local, A
REF7 ENDA-LISTA-(ENDB-LISTB) local, A local, A external
REF8 LISTB-LISTA local, R local, R external

14

Program Linking Example

 Fig. 3.10
 Load address for control sections

» PROGA 004000 63
» PROGB 004063 7F
» PROGC 0040E2 51» PROGC 0040E2 51

 Load address for symbols
» LISTA: PROGA+0040=4040
» LISTB: PROGB+0060=40C3
» LISTC: PROGC+0030=4112

 REF4 in PROGA REF4 in PROGA
» ENDA-LISTA+LISTC=14+4112=4126
» T0000540F000014FFFFF600003F000014FFFFC0

15

» M00005406+LISTC

Program Logic and Data Structure

 Two Passes Logic
» Pass 1: assign addresses to all external symbols
» Pass 2: perform the actual loading, relocation, and linking

 ESTAB (external symbol table)

Control section Symbol Address Length
Progam A 4000 63

LISTA 4040
ENDA 4054

Program B 4063 7Fg
LISTB 40C3
ENDB 40D3

P C 40E2 51

16

Program C 40E2 51
LISTC 4112
ENDC 4124

Pass 1 Program Logic

 Pass 1:
assign addresses to all external symbols» assign addresses to all external symbols

 Variables
» PROGADDR (program load address) from OS» PROGADDR (program load address) from OS
» CSADDR (control section address)
» CSLTH (control section length)(g)
» ESTAB

 Fig. 3.11(a)
» Process Define Record

17

Pass 2 Program Logic

 Pass 2:
» perform the actual loading, relocation, and linking

 Modification record
» lookup the symbol in ESTAB

 End record for a main program
t f dd» transfer address

 Fig. 3.11(b)
Process Text record and Modification record» Process Text record and Modification record

18

Improve Efficiency

 Use local searching instead of multiple searches of
ESTAB for the same symbolESTAB for the same symbol
» assign a reference number to each external symbol
» the reference number is used in Modification recordsthe reference number is used in Modification records

 Implementation
» 01: control section name
» other: external reference symbols

 Example
» Fig. 3.12

19

Figure 3.12

Ref No. Symbol Address
1 PROGA 4000
2 LISTB 40C3
3 ENDB 40D3
4 LISTC 41124 LISTC 4112
5 ENDC 4124

PROGA

Ref No. Symbol Address
1 PROGB 4063
2 LISTA 4040

Ref No. Symbol Address
1 PROGC 4063
2 LISTA 4040

3 ENDA 4054
4 LISTC 4112
5 ENDC 4124

3 ENDA 4054
4 LISTB 40C3
5 ENDB 40D3

20

5 ENDC 4124 5 ENDB 40D3
PROGB PROGC

Machine-Independent Loader
Features

 Automatic Library Search
Many linking loaders can automatically incorporate routines» Many linking loaders can automatically incorporate routines
from a subprogram library into the program being loaded

– A standard library
– Other libraries may be specified by control statements or by

parameters to the loader
» Also called automatic library call in some systems» Also called automatic library call in some systems

21

Automatic Library Search

 Implementation
Linking loaders that support automatic library search must» Linking loaders that support automatic library search must
keep track of external symbols that are referred to , but not
defined, in the primary input to the loader

» At the end of Pass 1, the symbols in ESTAB that remain
undefined represented unresolved external references

» Then the loader searches the library or libraries specified for» Then, the loader searches the library or libraries specified for
routines that contain the definitions of these symbols

» Note that the subroutines fetched from a library in this way
th l t i t l fmay themselves contain external references.

– It is therefore necessary to repeat the library search process
until all reference are resolved.

22

Automatic Library Search

 Implementation
» The process allows the programmer to override the standard» The process allows the programmer to override the standard

subroutines in the library by supplying his or her own routines
 The libraries to be searched by the loader ordinarily contain

assembled or compiled versions of the subroutines (i e objectassembled or compiled versions of the subroutines (i.e., object
programs)
» For efficient searching

– Directory
» Some operating systems can keep the directory for commonly used

libraries permanently in memory
 The same technique applies equally well to the resolution of

external references to data items

23

Loader Options

 Many loaders allow the user to specify options that
modify the standard processingmodify the standard processing

 Many loaders have a special command language
» A separate input file to loader» A separate input file to loader
» Embedded in the primary input stream
» In source programg

24

Loader Options

 Examples of command language
1. INCLUDE program-name(library-name)

Di t th l d t d th d i t d bj t fDirect the loader to read the designated object program from a
library and treat it as if it were part of the primary loader input

2. DELETE csdect-name
Instruct the loader to delete the named control section(s) from the

set of programs being loaded
3 CHANGE name1 name23. CHANGE name1, name2

Cause the external symbol name1 to be changed to name2
wherever it appears in the object programs

INCLUDE READ(UTLIB)
INCLUDE WRITE(UTLIB)
DELETE RDREC, WRREC

25

,
CHANGE RDREC, READ
CHANGE WRREC, WRITE

Loader Options

 Examples of command language
4. LIBRARY MYLIB

A t ti i l i f lib ti t ti f t lAutomatic inclusion of library routines to satisfy external
references

Searched before the standard libraries
5. NOCALL STDDEV, PLOT, CORREL

To instruct the loader that these external references are to remain
unsolvedunsolved

6. Others
Output from the load, e.g., the map which includes control section

d dddnames and adddresses
The ability to specify the location at which execution is to begin
Control whether or not the loader should attempt to execute the

26

program if errors are detected during the load

Loader Design Options

 Linkage Editor
» Perform linking prior to load time

 Dynamic linking
» Linking function is performed at execution time

 Bootstrap loader
» Be used to run stand-alone programs independent of the

operating system or the system loaderoperating system or the system loader

27

Linkage Editors
 The essential difference between a linkage editor and a linking

loader

28

Linkage Editors

 A linking loaders performs
» All linking and relocation operations» All linking and relocation operations
» Automatic library search
» Loads the linked program directly into memory for execution

 A linkage editor
» Produces a linked version of program (often called a load

module or an executable image) which is written to a file ormodule or an executable image), which is written to a file or
library for later execution

» A simple relocating loader can be used to load the linked
version of program into memoryversion of program into memory

– The loading can be accomplished in one pass with no external
symbol table required

29

Linkage Editors

 A linkage editor
Resolution of external references and library searching are» Resolution of external references and library searching are
only performed once

» In the linked version of programs
– All external references are resolved, and relocation is indicated

by some mechanism such as modification records or a bit mask
» External references is often retained in the linked program» External references is often retained in the linked program

– To allow subsequent relinking of the program to replace control
sections, modify external references, etc.

30

Linkage Editors

 Linkage editors can perform many useful functions
besides simply preparing an object program forbesides simply preparing an object program for
execution
1. The linkage editor can be used to replace the subroutines in1. The linkage editor can be used to replace the subroutines in

the linked version

INCLUDE PLANNER(PROGLIB)INCLUDE PLANNER(PROGLIB)
DELETE PROJECT
INCLUDE PROJECT(NEWLIB)
REPLACE PLANNER(PROGLIB)REPLACE PLANNER(PROGLIB)

31

Linkage Editors

2. Linkage editors can also be used to build packages of
subroutines or other control sections that are generally usedsubroutines or other control sections that are generally used
together
It could be used to combine the appropriate subroutines into a

package with a command sequencepackage with a command sequence

INCLUDE READR(FTNLIB)
INCLUDE WRITER(FTNLIB) NC U E W E (F N B)
INCLUDE BLOCK(FTNLIB)
INCLUDE DEBLOCK(FTNLIB)
INCLUDE ENCODE(FTNLIB)
INCLUDE DECODE(FTNLIB)INCLUDE DECODE(FTNLIB)
.
.
.

32

SAVE FTNIO(SUBLIB)

Linkage Editors

3. Linkage editors often allow the user to specify that external
references are not to be resolved by automatic libraryreferences are not to be resolved by automatic library
search
Only the external references between user-written routines would

be resolvedbe resolved

33

Dynamic Linking

 Postpone the linking function until execution time
» A subroutine is loaded and linked to the rest of the program» A subroutine is loaded and linked to the rest of the program

when it is first called
– Dynamic linking, dynamic loading, or load on call

All l ti t h Allow several executing programs to share one copy
of a subroutine or library

 In object-oriented system it allows the In object oriented system, it allows the
implementation of the object and its methods to be
determined at the time the program is run

 Dynamic linking provides the ability to load the
routines only when they are needed

34

 Dynamically loaded must be
called via an operating system
service requestq

 Load-and-call service
a) OS examines its inernal tables to

determine whether or not thedetermine whether or not the
routine is already loaded

b) Routine is loaded from library
c) Control is passed from OS to thec) Control is passed from OS to the

called subroutine
d) Subroutine is finished
e) Calling to a subroutine which ise) Calling to a subroutine which is

already in memory
 Binding of the name to an actuall

address is delayed from load time

35

address is delayed from load time
until execution time

Bootstrap Loaders

 Given an idle computer with no program in memory,
how do we get things started?how do we get things started?
» With the machine empty and idle, there is no need for

program relocation
– Some early computers required the operator to enter into

memory the object code for an absolute loader, using switches
on the computer consolep

– One some computer, an absolute loader program is
permanently resident in a ROM

– A built-in hardware function that reads a fixed-length recordA built in hardware function that reads a fixed length record
form some device into memory at a fixed location

36

