
AssemblersAssemblers

System SoftwareSystem Softwareyy
by  by  Leland L. BeckLeland L. Beck
Chapter 2Chapter 2

1



Role of AssemblerRole of AssemblerRole of AssemblerRole of Assembler

Source Object

Program
Assembler

Code
Linker

Executable 
CodeCode

Loader

2



Chapter 2 Chapter 2 ---- OutlineOutlineChapter 2 Chapter 2 OutlineOutline
 Basic Assembler Functions Basic Assembler Functions
 Machine-dependent Assembler Features

M hi i d d t A bl F t Machine-independent Assembler Features
 Assembler Design Options

3



Introduction to AssemblersIntroduction to AssemblersIntroduction to AssemblersIntroduction to Assemblers
 Fundamental functions Fundamental functions

 translating mnemonic operation codes to their 
machine language equivalentsmachine language equivalents

assigning machine addresses to symbolic 
labelslabels 

M hi d d Machine dependency
different machine instruction formats and codes

4



Example Program (Fig. 2.1)Example Program (Fig. 2.1)Example Program (Fig. 2.1)Example Program (Fig. 2.1)

 Purpose
 reads records from input device (code F1) reads records from input device (code F1)
copies them to output device (code 05)
at the end of the file writes EOF on the outputat the end of the file, writes EOF on the output 

device, then RSUB to the operating system

5



Example Program (Fig. 2.1)Example Program (Fig. 2.1)Example Program (Fig. 2.1)Example Program (Fig. 2.1)
 Data transfer (RD, WD)( , )

a buffer is used to store record 
buffering is necessary for different I/O ratesbuffering is necessary for different I/O rates
 the end of each record is marked with a null 

character (00 )character (0016)
 the end of the file is indicated by a zero-length 

recordrecord
 Subroutines (JSUB, RSUB)

RDREC WRRECRDREC, WRREC
save link register first before nested jump

6



Assembler DirectivesAssembler DirectivesAssembler DirectivesAssembler Directives
 Pseudo-InstructionsPseudo Instructions

Not translated into machine instructions
Providing information to the assemblerProviding information to the assembler

 Basic assembler directives
STARTSTART
END
BYTE
WORD
RESB
RESW

7



Assembler’s functionsAssembler’s functionsAssembler s functionsAssembler s functions

Convert mnemonic operation codes to Convert mnemonic operation codes to 
their machine language equivalents
C t b li d t th i Convert symbolic operands to their 
equivalent machine addresses 

 Build the machine instructions in the 
proper format

 Convert the data constants to internal 
machine representationsp

 Write the object program and the 
assembly listing

8

assembly listing



Example of Instruction AssembleExample of Instruction AssembleExample of Instruction AssembleExample of Instruction Assemble

STCH        BUFFER,X 549039

8 1 15
opcode x address

m

(54)16                       1  (001)2                                                (039)16

m

 Forward reference

9



Difficulties: Forward ReferenceDifficulties: Forward ReferenceDifficulties: Forward ReferenceDifficulties: Forward Reference
 Forward reference: reference to a label that Forward reference: reference to a label that 

is defined later in the program.

Loc Label Operator Operand

1000 FIRST STL RETADR

1003 CLOOP JSUB RDREC1003 CLOOP JSUB RDREC
… … … … …
1012 J CLOOP
… … … … …
1033 RETADR RESW 1

10



Two Pass AssemblerTwo Pass AssemblerTwo Pass AssemblerTwo Pass Assembler
 Pass 1 Pass 1

 Assign addresses to all statements in the program
 Save the values assigned to all labels for use in Pass 2 Save the values assigned to all labels for use in Pass 2
 Perform some processing of assembler directives

 Pass 2 Pass 2
 Assemble instructions
 Generate data values defined by BYTE, WORD Generate data values defined by BYTE, WORD
 Perform processing of assembler directives not done in 

Pass 1
 Write the object program and the assembly listing

11



Two Pass Assembler Two Pass Assembler Two Pass Assembler Two Pass Assembler 
 Read from input line Read from input line

LABEL, OPCODE, OPERAND

Source

P 1 P 2Intermediate Object

program

Pass 1 Pass 2 file
Object 
codes

OPTAB SYMTAB SYMTAB

12



Data StructuresData StructuresData StructuresData Structures

 Operation Code Table (OPTAB)
 Symbol Table (SYMTAB)Symbol Table (SYMTAB)
 Location Counter(LOCCTR)

13



OPTAB (operation code table)OPTAB (operation code table)OPTAB (operation code table)OPTAB (operation code table)

 Content
menmonic, machine code (instruction format, 

length) etc.
 Characteristic

static table
 Implementation Implementation

array or hash table, easy for search

14



SYMTAB (symbol table)SYMTAB (symbol table)SYMTAB (symbol table)SYMTAB (symbol table)
 Content COPY 1000 Content

 label name, value, flag, (type, length) etc.
Characteristic

COPY 1000
FIRST 1000
CLOOP 1003
ENDFIL 1015 Characteristic

dynamic table (insert, delete, search)
ENDFIL 1015
EOF 1024
THREE 102D

 Implementation
hash table, non-random keys, hashing function

ZERO 1030
RETADR 1033
LENGTH 1036y g
BUFFER 1039
RDREC 2039

15



Object ProgramObject ProgramObject ProgramObject Program
 Header

Col 1 HCol. 1 H
Col. 2~7 Program name
Col. 8~13 Starting address (hex)g ( )
Col. 14-19 Length of object program in bytes (hex)

 Text 
Col.1 T
Col.2~7 Starting address in this record (hex)
C l 8 9 L h f bj d i hi d i b (h )Col. 8~9 Length of object code in this record in bytes (hex)
Col. 10~69Object code (69-10+1)/6=10 instructions

End End
Col.1 E
Col 2~7 Address of first executable instruction (hex)

16

Col.2 7 Address of first executable instruction (hex)
(END program_name)



Fig. 2.3Fig. 2.3Fig. 2.3Fig. 2.3
H COPY  001000 00107A
T 001000 1E 141033 482039 001036 281030 301015 482061 ...
T 00101E 15 0C1036 482061 081044 4C0000 454F46 000003 000000
T 002039 1E 041030 001030 E0205D 30203F D8205D 281030T 002039 1E 041030 001030 E0205D 30203F D8205D 281030 …
T 002057 1C 101036 4C0000 F1 001000 041030 E02079 302064 …
T 002073 07 382064 4C0000 05
E 001000

17



Homework #1Homework #1Homework #1Homework #1
SUM START 4000
FIRST LDX ZEROFIRST LDX ZERO

LDA ZERO
LOOP ADD TABLE,X,

TIX COUNT
JLT LOOP
STA TOTALSTA TOTAL
RSUB

TABLE RESW 2000
COUNT RESW 1
ZERO WORD 0
TOTAL RESW 1TOTAL RESW 1

END FIRST

18



Assembler DesignAssembler DesignAssembler DesignAssembler Design
 Machine Dependent Assembler Featuresac e epe de t sse b e eatu es

 instruction formats and addressing modes
 program relocationp g

 Machine Independent Assembler Features
 literals
 symbol-defining statements
 expressions
 program blocks
 control sections and program linking

19



MachineMachine--dependent dependent MachineMachine dependent dependent 
Assembler FeaturesAssembler Features
Sec. 2Sec. 2--22
 Instruction formats and addressing modesInstruction formats and addressing modes
 Program relocationProgram relocation

20



Instruction Format and Addressing ModeInstruction Format and Addressing ModeInstruction Format and Addressing ModeInstruction Format and Addressing Mode

SIC/XE SIC/XE
 PC-relative or Base-relative addressing: op m

I di t dd i @ Indirect addressing: op @m
 Immediate addressing: op #c
 Extended format: +op m Extended format: +op m
 Index addressing: op m,x
 register-to-register instructions register-to-register instructions
 larger memory -> multi-programming (program allocation)

 Example program Example program
 Figure 2.5

21



TranslationTranslationTranslationTranslation
 Register translationg

 register name (A, X, L, B, S, T, F, PC, SW) and their 
values (0,1, 2, 3, 4, 5, 6, 8, 9)

 preloaded in SYMTAB

 Address translation
 Most register-memory instructions use program 

counter relative or base relative addressing
 Format 3: 12-bit address field

 base-relative: 0~4095
 pc relative: 2048~2047 pc-relative: -2048~2047

 Format 4: 20-bit address field

22



PCPC--Relative Addressing ModesRelative Addressing ModesPCPC Relative Addressing ModesRelative Addressing Modes

 PC-relative
 10 0000 FIRST STL RETADR 17202D

op(6) n I x b p e disp(12)

(14)16                1 1 0 0 1 0 (02D) 16

displacement= RETADR - PC = 30-3 = 2D
 40 0017 J CLOOP 3F2FEC

op(6) n I x b p e disp(12)

(3C)16              1 1 0 0 1 0 (FEC) 16

op(6) n I x b p e disp(12)

23

displacement= CLOOP-PC= 6 - 1A= -14= FEC



BaseBase--Relative Addressing ModesRelative Addressing ModesBaseBase Relative Addressing ModesRelative Addressing Modes

Base relative Base-relative
 base register is under the control of the programmer
 12 LDB #LENGTH 12 LDB #LENGTH
 13 BASE LENGTH
 160 104E STCH BUFFER X 57C003 160 104E STCH BUFFER, X 57C003

op(6) n I x b p e disp(12)
( 54 )16              1 1 1 1 0 0 ( 003 ) 16

(54)              1 1 1 0 1 0     0036-1051= -101B16

p( ) p p( )

( ) 16

displacement= BUFFER - B = 0036 - 0033 = 3
 NOBASE is used to inform the assembler that the contents 

24

of the base register no longer be relied upon for addressing



Immediate Address TranslationImmediate Address TranslationImmediate Address TranslationImmediate Address Translation

 Immediate addressing
 55 0020 LDA #3 010003

( 00 )16              0 1 0 0 0 0 ( 003  ) 16

op(6) n I x b p e disp(12)

 133 103C +LDT #4096 75101000

( 74  )16             0 1 0 0 0 1 ( 01000 ) 16

op(6) n I x b p e disp(20)

25



Immediate Address TranslationImmediate Address Translation (Cont.)(Cont.)Immediate Address TranslationImmediate Address Translation (Cont.)(Cont.)

 Immediate addressing
 12 0003 LDB #LENGTH 69202D

( 68)16                0 1 0 0 1 0 ( 02D ) 16

op(6) n I x b p e disp(12)

( 68)16 0 1 0 0 0 0          ( 033)16 690033

 the immediate operand is the symbol LENGTH the immediate operand is the symbol LENGTH
 the address of this symbol LENGTH is loaded into 

register Bregister B
LENGTH=0033=PC+displacement=0006+02D
 if immediate mode is specified the target address

26

if immediate mode is specified, the target address 
becomes the operand



Indirect Address TranslationIndirect Address TranslationIndirect Address TranslationIndirect Address Translation
 Indirect addressing Indirect addressing

 target addressing is computed as usual (PC-
relative or BASE-relative)relative or BASE relative)

only the n bit is set to 1
 70 002A J @RETADR 3E2003 70 002A J @RETADR 3E2003

op(6) n I x b p e disp(12)

( 3C )16              1 0 0 0 1 0 ( 003 ) 16

TA=RETADR=0030TA RETADR 0030
TA=(PC)+disp=002D+0003

27



Program RelocationProgram Relocation
 Example Fig. 2.1

Absolute program, starting address 1000
e.g. 55 101B LDA THREE 00102D

Relocate the program to 2000p g
e.g. 55 101B LDA THREE 00202D

Each Absolute address should be modified
 Example Fig. 2.5: 

 Except for absolute address the rest of the instructions Except for absolute address, the rest of the instructions 
need not be modified
 not a memory address (immediate addressing)
 PC-relative, Base-relative

 The only parts of the program that require modification at 
load time are those that specify direct addresses

28

load time are those that specify direct addresses



ExampleExampleExampleExample

29



Relocatable ProgramRelocatable ProgramRelocatable ProgramRelocatable Program

 Modification record
Col 1 M
Col 2-7 Starting location of the address field to be

modified, relative to the beginning of the program
Col 8-9 length of the address field to be modified, in half-

bytes

30



Object CodeObject CodeObject CodeObject Code

31



MachineMachine--Independent Assembler Independent Assembler MachineMachine Independent Assembler Independent Assembler 
FeaturesFeatures
LiteralsLiterals
Symbol Defining StatementSymbol Defining Statement
ExpressionsExpressions
Program BlocksProgram Blocks
Control Sections and Program Control Sections and Program 
LinkingLinking

32



LiteralsLiterals
 Design idea

Let programmers to be able to write the valueLet programmers to be able to write the value 
of a constant operand as a part of the 
instruction that uses it.instruction that uses it. 

This avoids having to define the constant 
elsewhere in the program and make up a labelelsewhere in the program and make up a label 
for it.

 Example Example
 e.g. 45 001A ENDFILLDA =C’EOF’ 032010
 93 LTORG

 002D * =C’EOF’ 454F46
 e.g. 215 1062 WLOOP TD =X’05’ E32011

33



Literals vs. Immediate OperandsLiterals vs. Immediate Operandspp

 Immediate Operands Immediate Operands
The operand value is assembled as part of the 

machine instructionmachine instruction
 e.g. 55 0020 LDA #3 010003

Literals Literals
The assembler generates the specified value 

as a constant at some other memory locationas a constant  at some other memory location
 e.g. 45 001A ENDFILLDA =C’EOF’ 032010

Compare (Fig 2 6) Compare (Fig. 2.6)
 e.g. 45 001A ENDFIL LDA EOF 032010
 80 002D EOF BYTE C’EOF’454F46

34

 80 002D EOF BYTE C EOF 454F46



Literal Literal -- Implementation (1/3)Implementation (1/3)Literal Literal Implementation (1/3)Implementation (1/3)
 Literal pools Literal pools

Normally literals are placed into a pool at the 
end of the programend of the program
see Fig. 2.10 (END statement)

 In some cases it is desirable to place literals In some cases, it is desirable to place literals 
into a pool at some other location in the object 
programprogram
assembler directive LTORG
 reason: keep the literal operand close to the reason: keep the literal operand close to the 

instruction 

35



Literal Literal -- Implementation (2/3)Implementation (2/3)
 Duplicate literals

e g 215 1062 WLOOP TD =X’05’e.g. 215 1062 WLOOP TD =X 05
e.g. 230 106B WD =X’05’
The assemblers should recognize duplicate 

literals and store only one copy of the specified 
d t ldata value
Comparison of the defining expression

S lit l ith diff t l• Same literal name with different value, e.g. 
LOCCTR=*

Comparison of the generated data valueComparison of the generated data value 
• The benefits of using generate data value are usually 

not great enough to justify the additional complexity in 
th bl

36

the assembler



Literal Literal -- Implementation (3/3)Implementation (3/3)
 LITTAB

li l h d l d l h h dd literal name, the operand value and length, the address 
assigned to the operand 

 Pass 1 Pass 1
 build LITTAB with literal name, operand value and length, 

leaving the address unassignedg g
 when LTORG statement is encountered, assign an address to 

each literal not yet assigned an address
 Pass 2

 search LITTAB for each literal operand encountered
 generate data values using BYTE or WORD statements
 generate modification record for literals that represent an 

address in the program

37

address in the program



SymbolSymbol--Defining StatementsDefining StatementsSymbolSymbol Defining StatementsDefining Statements
 Labels on instructions or data areas Labels on instructions or data areas

 the value of such a label is the address 
assigned to the statementassigned to the statement

 Defining symbols
b lEQU lsymbolEQU value

value can be:  constant,  other symbol, 
iexpression

making the source program easier to 
d t dunderstand

no forward reference

38



SymbolSymbol--Defining StatementsDefining StatementsSymbolSymbol Defining StatementsDefining Statements
 Example 1 Example 1

 MAXLEN EQU 4096
 +LDT #MAXLEN +LDT #4096 LDT #MAXLEN

 Example 2
 BASE EQU R1 BASE EQU R1
 COUNT EQU R2
 INDEX EQU R3 INDEX EQU R3

 Example 3
 MAXLEN EQU BUFEND-BUFFER MAXLEN EQU BUFEND-BUFFER

39



ORG (origin)ORG (origin)ORG (origin)ORG (origin)
 Indirectly assign values to symbolsd ect y ass g a ues to sy bo s
 Reset the location counter to the specified value

 ORG value

 Value can be:  constant,  other symbol, 
expression

 No forward reference
 Example

SYMBOL: 6bytes
VALUE: 1word SYMBOL VALUE FLAGS

STABVALUE: 1word
FLAGS: 2bytes
 LDA VALUE X

STAB
(100 entries)

40

 LDA VALUE, X
. . .. . .. . .



ORG ExampleORG ExampleORG ExampleORG Example
 Using EQU statements Using EQU statements

 STAB RESB 1100
 SYMBOL EQU STAB SYMBOL EQU STAB
 VALUE EQU STAB+6
 FLAG EQU STAB+9

 Using ORG statements
 STAB RESB 1100 STAB RESB 1100
 ORG STAB
 SYMBOL RESB 6
 VALUE RESW 1
 FLAGS RESB 2

41

 ORG STAB+1100



ExpressionsExpressionsExpressionsExpressions
 Expressions can be classified as absolute p ess o s ca be c ass ed as abso ute

expressions or relative expressions
 MAXLEN EQU BUFEND-BUFFER
 BUFEND and BUFFER both are relative terms, 

representing addresses within the program
H h i BUFEND BUFFER However the expression BUFEND-BUFFER represents 
an absolute value

When relative terms are paired with opposite When relative terms are paired with opposite 
signs, the dependency on the program starting 
address is canceled out; the result is an absolute ;
value

42



SYMTABSYMTABSYMTABSYMTAB
 None of the relative terms may enter into a o e o t e e at e te s ay e te to a

multiplication or division operation
 Errors:

 BUFEND+BUFFER
 100-BUFFER
 3*BUFFER

 The type of an expression
keep track of the types of all symbols defined in 

the program Symbol Type Valuey yp
RETADR R 30
BUFFER R 36
BUFEND R 1036

43

BUFEND R 1036
MAXLEN A 1000



Example 2.9Example 2.9Example 2.9Example 2.9

N V lSYMTAB LITTABName Value
COPY 0
FIRST 0 C'EOF' 454F46 3 002D

X'05' 05 1 1076CLOOP 6
ENDFIL 1A
RETADR 30

X'05' 05 1 1076

LENGTH 33
BUFFER 36
BUFEND 1036
MAXLEN 1000
RDREC 1036
RLOOP 1040
EXIT 1056
INPUT 105C
WREC 105D

44

WREC 105D
WLOOP 1062



Program BlocksProgram Blocksgg
 Program blocks

f t t f d th t d refer to segments of code that are rearranged 
within a single object program unit

SUSE [blockname]
At the beginning, statements are assumed to 

be part of the unnamed (default) block
 If no USE statements are included, the entire 

program belongs to this single block
Example: Figure 2.11
Each program block may actually contain 

several separate segments of the source 

45

program



Program Blocks Program Blocks -- ImplementationImplementationProgram Blocks Program Blocks ImplementationImplementation
 Pass 1

 each program block has a separate location counter
 each label is assigned an address that is relative to the 

start of the block that contains it
 at the end of Pass 1, the latest value of the location 

counter for each block indicates the length of that blockcounter for each block indicates the length of that block
 the assembler can then assign to each block a starting 

address in the object programj p g
 Pass 2

 The address of each symbol can be computed by y p y
adding the assigned block starting address and the 
relative address of the symbol to that block

46



Figure 2.12Figure 2.12Figure 2.12Figure 2.12
 Each source line is given a relative address Each source line is given a relative address 

assigned and a block number
Block name Block number Address LengthBlock name Block number Address Length

(default) 0 0000 0066
CDATA 1 0066 000B
CBLKS 2 0071 1000

 For absolute symbol, there is no block number

CBLKS 2 0071 1000

y ,
 line 107

 Example Example
 20 0006 0 LDA LENGTH 032060
 LENGTH=(Block 1)+0003= 0066+0003= 0069

47

( )
 LOCCTR=(Block 0)+0009= 0009



Program ReadabilityProgram Readability
 Program readability

N t d d f t i t ti li 15No extended format instructions on lines 15, 
35, 65

f (No needs for base relative addressing (line 13, 
14)

LTORG is used to make sure the literals are 
placed ahead of any large data areas (line 253)

 Object code
 It is not necessary to physically rearrange the 

generated code in the object program
see Fig. 2.13, Fig. 2.14

48

g g



Control SectionsControl Sections and Program Linkingand Program Linking
 Control Sections

are most often used for subroutines or otherare most often used for subroutines or other 
logical subdivisions of a program

 the programmer can assemble load and the programmer can assemble, load, and 
manipulate each of these control sections 
separatelyseparately

 instruction in one control section may need to 
refer to instructions or data located in anotherrefer to instructions or data located in another 
section

because of this there should be some meansbecause of this, there should be some means 
for linking control sections together

Fig 2 15 2 16

49

Fig. 2.15, 2.16



External Definition and ReferencesExternal Definition and References
 External definition

EXTDEF name [, name] [, ]
EXTDEF names symbols that are defined in this 

control section and may be used by other sections
 External reference

EXTREF  name [,name][, ]
EXTREF names symbols that are used in this 

control section and are defined elsewhere
 Example

 15   0003 CLOOP +JSUB     RDREC 4B100000
 160 0017 +STCH    BUFFER,X 57900000
 190 0028  MAXLEN     WORD     BUFEND-BUFFER 000000

50



ImplementationImplementationImplementationImplementation
 The assembler must include information in the object 

program that will cause the loader to insert proper values
where they are required

 Define record
 Col. 1 D

C l 2 f l b l d fi d i hi l i Col. 2-7 Name of external symbol defined in this control section
 Col. 8-13Relative address within this control section (hexadeccimal)
 C l 14 73 R t i f ti i C l 2 13 f th t l b l Col.14-73 Repeat information in Col. 2-13 for other external symbols

 Refer record
 Col 1 R Col. 1 R
 Col. 2-7 Name of external symbol referred to in this control section
 Col 8-73Name of other external reference symbols

51

 Col. 8-73Name of other external reference symbols



Modification RecordModification Record
 Modification record

 Col. 1 M
 Col. 2-7 Starting address of the field to be modified 

(hexiadecimal)
 C l 8 9 L th f th fi ld t b difi d i h lf b t Col. 8-9 Length of the field to be modified, in half-bytes 

(hexadeccimal)
 Col.11-16 External symbol whose value is to be added to or y

subtracted from the indicated field
 Note: control section name is automatically an external symbol, 

i e it is available for use in Modification recordsi.e. it is available for use in Modification records.
 Example 

 Figure 2.17g
 M00000405+RDREC
 M00000705+COPY

52



External References in Expression External References in Expression 
 Earlier definitions 

 required all of the relative terms be paired in an 
expression (an absolute expression), or that all 
except one be paired (a relative expression)

N t i ti New restriction
Both terms in each pair must be relative within 

the same control sectionthe same control section
 Ex: BUFEND-BUFFER
 Ex: RDREC-COPY Ex: RDREC-COPY

 In general, the assembler cannot determine 
whether or not the expression is legal atwhether or not the expression is legal at 
assembly time. This work will be handled by a 
linking loader.

53



Assembler Design OptionsAssembler Design Options

OneOne--pass assemblerspass assemblersOneOne pass assemblerspass assemblers
MultiMulti--pass assemblerspass assemblers
TwoTwo--pass assembler with overlay pass assembler with overlay TwoTwo pass assembler with overlay pass assembler with overlay 
structurestructure

54



TwoTwo--Pass Assembler with Overlay Pass Assembler with Overlay 
StructureStructureStructureStructure
 For small memory For small memory

pass 1 and pass 2 are never required at the 
same timesame time

 three segments
root: driver program and shared tables and root: driver program and shared tables and 
subroutines

pass 1pass 1
pass 2

 tree structure tree structure
overlay program

55



OneOne--Pass AssemblersPass AssemblersOneOne Pass AssemblersPass Assemblers
 Main problem Main problem

 forward references
data itemsdata items

 labels on instructions
S l ti Solution
data items: require all such areas be defined 

b f th f dbefore they are referenced
 labels on instructions: no good solution

56



OneOne--Pass AssemblersPass AssemblersOneOne Pass AssemblersPass Assemblers
 Main Problem Main Problem

 forward reference
data itemsdata items

 labels on instructions
T t f bl Two types of one-pass assembler
 load-and-go

produces object code directly in memory for 
immediate execution

 the other
produces usual kind of object code for later 

ti
57

execution



LoadLoad--andand--go Assembler go Assembler LoadLoad andand go Assembler go Assembler 
 Characteristics Characteristics

Useful for program development and testing
Avoids the overhead of writing the objectAvoids the overhead of writing the object 

program out and reading it back 
Both one pass and two pass assemblers canBoth one-pass and two-pass assemblers can 

be designed as load-and-go. 
H l id th h dHowever one-pass also avoids the over head 

of an additional pass over the source program
F l d d bl th t lFor a load-and-go assembler, the actual 
address must be known at assembly time, we 
can use an absolute program

58

can use an absolute program



Forward Reference in OneForward Reference in One--pass Assemblerpass Assemblerpp
 For any symbol that has not yet been 

defineddefined
1. omit the address translation
2. insert the symbol into SYMTAB, and mark this2. insert the symbol into SYMTAB, and mark this 

symbol undefined
3. the address that refers to the undefined 

symbol is added to a list of forward references 
associated with the symbol table entry

4. when the definition for a symbol is 
encountered, the proper address for the 
symbol is then inserted into any instructionssymbol is then inserted into any instructions 
previous generated according to the forward 
reference list

59



LoadLoad--andand--go Assembler (Cont.) go Assembler (Cont.) LoadLoad andand go Assembler (Cont.) go Assembler (Cont.) 
 At the end of the program At the end of the program

any SYMTAB entries that are still marked with * 
indicate undefined symbolsindicate undefined symbols

search SYMTAB for the symbol named in the 
END statement and jump to this location toEND statement and jump to this location to 
begin execution

The actual starting address must be The actual starting address must be 
specified at assembly time
Example Example
 Figure 2.18, 2.19

60



Producing Object Code Producing Object Code g jg j
 When external working-storage devices are not 

available or too slow (for the intermediate fileavailable or too slow (for the intermediate file 
between the two passes

 Solution:Solution:
 When definition of a symbol is encountered, the 

assembler must generate another Tex record with the 
correct operand address

 The loader is used to complete forward references that 
could not be handled by the assemblercould not be handled by the assembler

 The object program records must be kept in their 
original order when they are presented to the loaderg y p

 Example: Figure 2.20

61



MultiMulti--Pass AssemblersPass AssemblersMultiMulti Pass AssemblersPass Assemblers
 Restriction on EQU and ORG Restriction on EQU and ORG

no forward reference, since symbols’ value 
can’t be defined during the first passcan t be defined during the first pass

 Example
U li k li t t k t k f h lUse link list to keep track of whose value 
depend on an undefined symbol

Fi 2 21 Figure 2.21

62


