Assemblers

System Software

by Leland L. Beck
Chapter 2

Source

Program

=)
(D

—>

O

e ™
Assembler
_ Y,

Object
SN Linker
Code
Executable
CnAo

\J\I\Jb

Loader

Chapter 2 -- Outline

=« Basic Assembler Functions

= Machine-dependent Assembler Features

= Machine-independent Assembler Features
= Assembler Design Options

Introductio

.Z

« Fundamental functions

¢ translating mnemonic operation codes to their
machine language equivalents

¢ assigning machine addresses to symbolic
labels

= Machine dependency
¢ different machine instruction formats and codes

Example Program

/"\
\)
—

N—

« Purpose
& reads records from input device (code F1)
¢ copies them to output device (code 05)

¢ at the end of the file, writes EOF on the output
device, then RSUB to the operating system

Example Proaram (Fiqg. 2.1)
™~ <J \ <J /

« Data transfer (RD, WD)
¢ a buffer is used to store record
& buffering i1s necessary for different 1/O rates

¢ the end of each record is marked with a null
character (00,4)

¢ the end of the file is indicated by a zero-length
record

= Subroutines (JSUB, RSUB)
¢ RDREC, WRREC
¢ save link register first before nested jump

ssembler Directives

= Pseudo-Instructions

¢ Not translated into machine instructions

¢ Providing information to the assembler
= Basic assembler directives

¢ START

¢ END

¢ BYTE

¢ WORD

¢ RESB

¢ RESW

Assembler’s functions

Convert mnemonic operation codes to
their machine language equivalents

Convert symbolic operands to their
equivalent machine addresses v

Build the machine instructions in the
proper format

Convert the data constants to internal
machine representations

Write the object program and the
assembly listing

STCH BUFFER,X 549039
8 1 15
opcode | x| address
m
(54) 16 1 (001), (039) 46

Forward reference

10

Difficulties: Forward Reference

H Wl W W i | L J 1 N\ W

« Forward reference: reference to a label that
Is defined later in the program.

Loc Label Operator Operand

1000 FIRST STL RETADR

1003 CLOOP JSUB RDREC
< 1012 J CLOOP

1033 RETADR RESW 1

Two Pass Assembler

[| w v | | ' L 1 1 1IN 1

Pass 1

¢ Assign addresses to all statements in the program

¢ Save the values assigned to all labels for use in Pass 2
¢ Perform some processing of assembler directives

Pass 2
¢ Assemble instructions
¢ Generate data values defined by BYTE, WORD

¢ Perform processing of assembler directives not done in
Pass 1

¢ Write the object program and the assembly listing

12

Two Pass Assembler

= Read from input line
¢ LABEL, OPCODE, OPERAND

Source
program

l

Pass 1

/\

OPTAB

Intermediate .
file

SYMTAB

SYMTAB

Nhiart
> \JINJ

JL:UL

codes

13

Data Stru

f—l'

Operation Code Table (OPTAB)
Symbol Table (SYMTAB)
Location Counter(LOCCTR)

14

OPTAB (operation code table)
« Content
¢ menmonic, machine code (instruction format,
length) etc.

= Characteristic
¢ static table
= Implementation
¢ array or hash table, easy for search

15

SYMTAB (symbol table)

J

« Content
¢ label name, value, flag, (type
= Characteristic
¢ dynamic table (insert, delete
= Implementation
¢ hash table, non-random key

COPY
FIRST
CLOOP
ENDFIL
EOF
THREE
ZERO
RETADR
LENGTH
BUFFER
RDREC

1000
1000
1003
1015
1024
102D
1030
1033
1036
1039
2039

Oh Program

- Header
Col. 1 H
Col. 2~7 Program name
Col. 8~13 Starting address (hex)
Col. 14-19 Length of object program in bytes (hex)

« lext
Col.1 T
Col.2~7 Starting address in this record (hex)
Col. 8~9 Length of object code in this record in bytes (hex)
Col. 10~690bject code (69-10+1)/6=10 instructions

« End
Col.1 E

Col.2~7 Address of first executable instruction (hex)

(END program_name)
16

Fig. 2.3
J

H COPY 001000 00107A

T 001000 1E 141033 482039 001036 281030 301015 482061 ...

T 00101E 15 0C1036 482061 081044 4C0000 454F46 000003 000000
T 002039 1E 041030 001030 E0205D 30203F D8205D 281030 ...

T 002057 1C 101036 4C0000 F1 001000 041030 E02079 302064 ...

T 002073 07 382064 4C0000 05

E 001000

17

SUM
FIRST

LOOP

TABLE
COUNT
ZERO
TOTAL

START
LDX
LDA
ADD
TIX
JLT
STA
RSUB
RESW
RESW
WORD
RESW
END

4000
ZERO
ZERO
TABLE,X
COUNT
LOOP
TOTAL

2000
1

0

1
FIRST

End of Sec 2. ¥4

Assembler Design
« Machine Dependent Assembler Features
¢ instruction formats and addressing modes
¢ program relocation
=« Machine Independent Assembler Features
¢ literals
¢ symbol-defining statements
¢ expressions
¢ program blocks
¢ control sections and program linking

19

Machine-dependent

Assembler Features

Sec. 2-2

Instruction formats and addressing modes
Program relocation

21

Instruction Format and Addressing Mode
= SIC/XE

¢ PC-relative or Base-relative addressing: op m

¢ Indirect addressing: op @m

¢ Immediate addressing: op #cC

¢ Extended format: +0p M

¢ Index addressing: op m,X

A ranlcfar fn rnrucfnr inctriictinneg
3 1 111 Il wilIVI IV

3 A 8 1

¢ larger memory -> multi-
= Example program
¢ Figure 2.5

-programming (program allocation)

22

Translation

= Register translation
¢ register name (A, X, L, B, S, T, F, PC, SW) and their
values (0,1, 2, 3,4, 5, 6, 8, 9)
¢ preloaded in SYMTAB

« Address translation

¢ Most register-memory instructions use program
counter relative or base relative addressing

¢ Format 3: 12-bit address field
- base-relative: 0~4095
- pc-relative: -2048~2047

¢ Format 4: 20-bit address field

PC-Relative Addressing Modes
PC-relative
L 2

op(6) n| 1| x{b|p|e disp(12)

displacement= RETADR - PC = 30-3 = 2D

op(6) n| 1| x{b|p|e disp(12)

displacement= CLOOP-PC=6 - 1A=-14= FEC

Base-Relative Addressing I\/Indpc

Base-relative

¢ base register is under the control of the programmer
4

4

4

op(6) n| 1|x|b|p|e disp(12)

(54) 111010 0036-1051=-101B

displacement= BUFFER - B = 0036 - 0033 = 3

¢ NOBASE is used to inform the assembler that the contents
of the base register no longer be relied upon for addressing

¢

Immediate Address Translation
Immediate addressing
op(6) n| 1| x{b|p|e disp(12)
op(6) n| 1| x{b|p|e disp(20)

Immediate Address Translation (Cont.)

Immediate addressing
L 4

op(6) n| 1| x|b|p|e disp(12)

fhn |mmnn||::1'n npnr::nrl |c fhn cymhnl | ENGTH

INUI LI NN 11

the address of this symbol LENGTH is loaded into
register B

LENGTH=0033=PC+displacement=0006+02D

If Immediate mode Is specified, the target address
becomes the operand

Indirect Address Transla

r—l-

Indirect addressing

& target addressing is computed as usual (PC-
relative or BASE-relative)

eonlythenbitissetto 1
&

op(6) n| 1| x|b|p|e disp(12)

TA=RETADR=0030
TA=(PC)+disp=002D+0003

28

Program Relocation

« Example Fig. 2.1
¢ Absolute program, starting address 1000

e.qg. 55 101B LDA THREE 00102D
¢ Relocate the program to 2000
e.qg. 55 101B LDA THREE 00202D

¢ Each Absolute address should be modified
« Example Fig. 2.5:

+ Except for absolute address, the rest of the instructions
need not be modified
-~ not a memory address (immediate addressing)
+ PC-relative, Base-relative

¢ The only parts of the program that require modification at
load time are those that specify direct addresses

:

>
D
=
™)

(

M—RLOREC

ﬂ%ﬂ ¥
nu:uﬁ 48101036
1036 | B41p
1078 :

{a)

(+JSUB ROREC)

807G

2.7 EINETE {85

481 060348

£
aml
= Fidbw

m— ADREC

(b}

(+JSUB RDAEC)

T Eu nE

4
&

4B 108458

m

o

—k
AEFEEE =] (A 13]]

{+JSUB RDREC)

w— RADAEC

{C)

30

Relocatable Program

| I N

« Modification record
¢Coll M

¢ Col 2-7 starting location of the address field to be
modified, relative to the beginning of the program

¢ Col 8-9 length of the address field to be modified, in half-
bytes

O
o

h_l

o

(D
<b
o
Q.
D

C

HhCDP‘!T !{Jﬂﬂﬂﬂﬂh{]{llﬁ??
'I:WDUDUUEIAI Di]"IUEDﬁEEE DEDJ{;BIDIDS&AGSEDEE:&E Fﬂﬂﬂﬂhﬂ?rlﬂﬂa‘#ﬂl DIDSDﬁSFEFEEﬁUEEDlU
Thﬂﬂﬂﬂlﬂﬁl BhDFEUlﬁhﬂlﬂﬂﬂﬂﬂﬂFIUﬂﬂhﬁﬂl DlﬂEDhBEEDﬂEAﬁ 54F46

Tﬁﬂﬂlﬂ.'iﬁﬂllgmﬂﬁ lﬂﬁﬂﬁﬂ%ﬁﬁﬂh?i lﬂlﬂﬂ{]hEE EﬂlﬂﬂBJIFFﬂPBEUI :!-_LAGU&ESE{]UQ,HS? Eﬂﬂ%.iBﬂ 50
&ﬂﬂlﬂﬁ%ﬁl DhE-HEFE%:l 34 HDDAﬁFDUGUAFlAB-ﬁ1ﬂﬂ??4ﬂﬂﬂﬂﬁﬂiﬂl EESEFF%3E003ADFEUUEEESU
Thﬂ!]lU?ﬂhﬂaJBEFEFﬁﬁFUﬂﬂﬂhBS

HPOGOA705

Hhﬂﬂﬂﬂlﬁhﬂﬁ

I!NGDUGE ?ﬁﬂj

EJ,\DHI]DDD

E2.8 MBEKRE260988912R

End of Sec 2.5

Machine-Independent A
Features

m
0
rD

5:7
@

Literals

Symbol Defining Statement
Expressions

Program Blocks

Control Sections and Program
Linking

33

Literals

=« Design idea

¢ Let programmers to be able to write the value
of a constant operand as a part of the
Instruction that uses it.

¢ This avoids having to define the constant
elsewhere in the program and make up a label

for it.
« Example
¢ €.9.45 O001A ENDFILLDA =CEOF 032010
o 93 LTORG
o 002D * =C'EOF’ A54F A6

¢ e.g. 215 1062 WLOOP D =X'05" E32011

Literals vs. Immediate Operands

= Immediate Operands

¢ The operand value is assembled as part of the
machine instruction
¢ e.g.55 0020 LDA #3 010003

« Literals

¢ The assembler generates the specified value
as a constant at some other memory location

¢ e.0.45 O001A ENDFILLDA =CEOF 032010
= Compare (Fig. 2.6)
¢ e.g.45 001A ENDFIL LDA EOF 032010

* 80 002D EOF BYTE CEOF'454F46

34

Literal - Implementation (1/3)

= Literal pools
¢ Normally literals are placed into a pool at the
end of the program
~see Fig. 2.10 (END statement)
¢ In some cases, it is desirable to place literals
Into a pool at some other location in the object
program
—assembler directive LTORG

- reason: keep the literal operand close to the
Instruction

35

36

Literal - Implementation (2/3)

=« Duplicate literals
¢e.g. 215 1062 WLOOP D =X'0%
ee.g. 230 106B WD =X'05'

¢ The assemblers should recognize duplicate
literals and store only one copy of the specified
data value

~ Comparison of the defining expression

« Same literal name with different value, e.qg.
LOCCTR=*

-~ Comparison of the generated data value

* The benefits of using generate data value are usually
not great enough to justify the additional complexity in
the assembler

Literal - Implementation (3/3)

« LITTAB

¢ literal name, the operand value and length, the address
assigned to the operand

= Passl

¢ build LITTAB with literal name, operand value and length,
leaving the address unassigned

¢ when LTORG statement is encountered, assign an address to
each literal not yet assigned an address

=« Pass?2
¢ search LITTAB for each literal operand encountered
generate data values using BYTE or WORD statements

generate modification record for literals that represent an
address in the program

37

38

Symbol-Defining Statements

« Labels on instructions or data areas

¢ the value of such a label is the address
assigned to the statement

= Defining symbols
¢ symbolEQU value

¢ value can be: * constant, ¥ other symbol, #
expression

¢ making the source program easier to
understand

& no forward reference

39

Symbol-Defin

= Example 1
¢ MAXLEN
4

= Example 2

¢ BASE EQU
¢ COUNT EQU
¢ INDEX EQU

= Example 3
¢ MAXLEN

Ing Statements

EQU 4096

+LDT #MAXLEN

+LDT

#4096

R1
R2
R3

EQU BUFEND-BUFFER

O
<")

l .

> (origin)
\~]

Indirectly assign values to symbols
Reset the location counter to the specified value

ORG value

Value can be: * constant, % other symbol, #

expression

No forward reference

Example
¢ SYMBOL.: 6bytes
¢ VALUE: 1word

¢ FLAGS: 2bytes
¢ LDA VALUE, X

STAB
(100 entries)

SYMBOL

VALUE FLAGS

O
-0
. |

[Tl

xambple
I~

nnan 1

= Using EQU statements
¢ STAB RESB 1100
¢ SYMBOL EQU STAB
¢ VALUE EQU STAB+6
¢ FLAG EQU STAB+9

= Using ORG statements
¢ STAB RESB 1100
o ORG STAB
¢ SYMBOL RESB 6
¢ VALUE RESW 1
¢ FLAGS RESB 2
o ORG STAB+1100

42

ExD

pre slons

Expressions can be classified as absolute
expressions or relative expressions

¢ MAXLEN EQU BUFEND-BUFFER

¢ BUFEND and BUFFER both are relative terms,
representing addresses within the program

¢ However the expression BUFEND-BUFFER represents

an absolute value

‘A’If'\f\lf'\ v N I ~ VN ﬂ A \AIJ i If'\ AAAAAA
VVIICII ICIQLIVC I.CIIIID al © pa cu VVIl.II UP[JUDILC

signs, the dependency on the program starting
address iIs canceled out; the result is an absolute

value

SYMTAB

None of the relative terms may enter into a
multiplication or division operation

Errors:

¢ BUFEND+BUFFER

¢ 100-BUFFER

¢ 3*BUFFER

The type of an expression

¢ keep track of the types of all symbols defined In
the program

Symbol Type Value
RETADR R 30
BUFFER R 36
BUFEND R 1036
MAXLEN A 1000

Example 2.9
LAQIlYIC 4.9
Name Value
SYMTAB COPY 0 LITTAB

FIRST 0 C'EOF' 454F46 3 002D
CLOOP 6 X'05' 05 1 1076
ENDFIL 1A
RETADR 30
LENGTH 33
BUFFER 36
BUFEND 1036
MAXLEN 1000
RDREC 1036
RLOOP 1040
EXIT 1056
INPUT 105C
WREC 105D

WLOOP 1062

45

Program Blocks

= Program blocks

¢ refer to segments of code that are rearranged
within a single object program unit

¢ USE [blockname]

¢ At the beginning, statements are assumed to
e part of the unnamed (default) block

¢ If no USE statements are included, the entire
orogram belongs to this single block

¢ Example: Figure 2.11

¢ Each program block may actually contain
several separate segments of the source
program

Program Blocks - Implem

—I-
r—l-

« Pass 1
¢ each program block has a separate location counter

¢ each label is assigned an address that is relative to the
start of the block that contains it

¢ at the end of Pass 1, the latest value of the location
counter for each block indicates the length of that block

¢ the assembler can then assign to each block a starting
address in the object program

= Pass 2

¢ The address of each symbol can be computed by
adding the assigned block starting address and the
relative address of the symbol to that block

46

Flaure 2.12
g

Each source line is given a relative address
assigned and a block number

Block name Block number = Address Length
(default) 0 0000 0066
CDATA 1 0066 000B
CBLKS 2 0071 1000

For absolute symbol, there is no block number

¢ line 107

Example
¢ 20 0006 O LDA LENGTH 032060
¢ LENGTH=(Block 1)+0003= 0066+0003= 0069
¢ LOCCTR=(Block 0)+0009= 0009

Program Readability

= Program readability

¢ No extended format instructions on lines 15,
35, 65

¢ No needs for base relative addressing (line 13,
14)

¢ LTORG is used to make sure the literals are
placed ahead of any large data areas (line 253)

= ODbject code

¢ It Is not necessary to physically rearrange the
generated code in the object program

¢ see Fig. 2.13, Fig. 2.14

48

Control Sections and Program Linking

= Control Sections

¢ are most often used for subroutines or other
logical subdivisions of a program

¢ the programmer can assemble, load, and
manipulate each of these control sections
separately

& instruction in one control section may need to
refer to instructions or data located in another
section

¢ because of this, there should be some means
for linking control sections together

o Fig. 2.15, 2.16

49

External Definition and References

=« External definition
¢ EXTDEF name [, name]

¢ EXTDEF names symbols that are defined in this
control section and may be used by other sections

« External reference

¢ EXTREF name [,name]

¢ EXTREF names symbols that are used in this
control section and are defined elsewhere

= Example
¢ 15 0003 CLOOP +JSUB RDREC 4B100000
¢ 160 0017 +STCH BUFFER,X 57900000

¢ 190 0028 MAXLEN WORD BUFEND-BUFFER 000000

50

51

r—

Implementation

The assembler must include information in the object
program that will cause the loader to insert proper values
where they are required

Define record
¢Col.l D
¢ Col. 2-7 Name of external symbol defined in this control section
¢ Col. 8-13Relative address within this control section (hexadeccimal)
¢ Col.14-73 Repeat information in Col. 2-13 for other external symbols
Refer record
¢Col.l R
¢ Col. 2-7 Name of external symbol referred to in this control section
¢ Col. 8-73Name of other external reference symbols

52

Modification Record

=« Modification record
¢Coll M

¢ Col. 2-7 Starting address of the field to be modified
(hexiadecimal)

¢ Col. 8-9 Length of the field to be modified, in half-bytes
(hexadeccimal)

¢ Col.11-16 External symbol whose value is to be added to or
subtracted from the indicated field

¢ Note: control section name is automatically an external symbol,

| e. |1' |c a\lallahln fnr use in Madificatinn ror\nrrlc
IV AVUIIUNMNILV 1VI SO 1ITHIVIUUILTITUVUULIVIIL 1 VLUV UV,

= Example
¢ Figure 2.17
¢ M0O00O00405+RDREC
¢ M00000705+COPY

53

External References in Expression

« Earlier definitions

< required all of the relative terms be paired in an
expression (an absolute expression), or that all
except one be paired (a relative expression)

= New restriction

¢ Both terms in each pair must be relative within
the same control section

& Ex;: BUFEND-BUFFER

¢ EX: RDREC-COPY

« In general, the assembler cannot determine
whether or not the expression is legal at
assembly time. This work will be handled by a
linking loader.

Assembler Design Options

One-pass assemblers

Multi-pass assemblers

Two-pass assembler with overlay
structure

55

Two-Pass Assembler with Overlay
Structure

= For small memory

¢ pass 1 and pass 2 are never required at the
same time

¢ three segments

= root: driver program and shared tables and
subroutines

~pass 1
= pass 2
¢ tree structure
¢ overlay program

56

One-Pass Assemblers

= Main problem

¢ forward references
- data items
~labels on instructions
= Solution

¢ data items: require all such areas be defined
before they are referenced

¢ labels on instructions: no good solution

57

One-Pass Assemblers

= Main Problem
¢ forward reference
- data items
= |abels on instructions
= Two types of one-pass assembler

¢ load-and-go

- produces object code directly in memory for
Immediate execution

¢ the other

- produces usual kind of object code for later
execution

58

Load-and-go Assembler

= Characteristics
¢ Useful for program development and testing

¢ Avoids the overhead of writing the object
program out and reading it back

¢ Both one-pass and two-pass assemblers can
be designed as load-and-go.

¢ However one-pass also avoids the over head
of an additional pass over the source program

¢ For a load-and-go assembler, the actual
address must be known at assembly time, we
can use an absolute program

Forward Reference in One-pass Assembler

= For any symbol that has not yet been
defined

1. omit the address translation

2. Insert the symbol into SYMTAB, and mark this
symbol undefined

3. the address that refers to the undefined
symbol is added to a list of forward references
associated with the symbol table entry

4. when the definition for a symbol is
encountered, the proper address for the
symbol is then inserted into any instructions
previous generated according to the forward
reference list

59

60

Load-and-go Assembler (Co

,.)

=« At the end of the program

¢ any SYMTAB entries that are still marked with *
Indicate undefined symbols

¢ search SYMTAB for the symbol named in the
END statement and jump to this location to
begin execution

= The actual starting address must be
specified at assembly time
= Example

¢ Figure 2.18, 2.19

Producing Object Code

= When external working-storage devices are not
available or too slow (for the intermediate file
between the two passes

= Solution:

¢ When definition of a symbol is encountered, the

assembler must generate another Tex record with the
correct operand address

¢ The loader is used to complete forward references that
could not be handled by the assembler

¢ The object program records must be kept in their
original order when they are presented to the loader

« Example: Figure 2.20

61

62

Multi-Pass Assemblers

= Restriction on EQU and ORG

¢ no forward reference, since symbols’ value
can’t be defined during the first pass

= Example

¢ Use link list to keep track of whose value
depend on an undefined symbol

« Figure 2.21

