Chapter 1 Background

Professor Gwan-Hwan Hwang Dept. Computer Science and Information Engineering National Taiwan Normal University 9/17/2009

Outlines

- 1.1 Introduction
- 1.2 System Software and Machine Architecture
- 1.3 The Simplified Instructional Computer (SIC)
 - SIC Machine Architecture
 - SIC/XE Machine Architecture
 - SIC Programming Examples
- 1.4 Traditional (CISC) Machines
- 1.5 RISC Machines

Introduction

- Definition of System software
 - System software consists of a variety of programs that support the operation of a computer
- Examples
 - Text editor, compiler, loader or linker, debugger, macro processors, operating system, database management systems, software engineering tools, etc.

System Software and Machine Architecture

- One characteristic in which most system software differs from application software is *machine dependency*
- System programs are intended to support the operation and use of the computer itself, rather than any particular application.

– E.g. Assemblers, compilers, operating systems

System Software and Machine Architecture (Cont'd)

- There are some aspects of system software that do not directly depend upon the type of computing system being supported
 - The second para. of Section 1.2

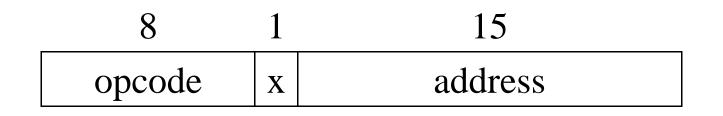
System Software and Machine Architecture (Cont'd)

- Because most system software is machinedependent, we must include real machines and real pieces of software in our study.
- Simplified Instructional Computer (SIC)
 - SIC is a hypothetical computer that has been carefully designed to include the hardware features most often found on real machines, while avoiding unusual or irrelevant complexities

The Simplified Instructional Computer (SIC)

- Like many other products, SIC comes in two versions
 - The standard model
 - An XE version
 - "extra equipments", "extra expensive"
- The two versions has been designed to be *upward compatible*
 - An object program for the standard SIC machine will also execute properly on a SIC/XE system

SIC Machine Architecture


- Memory
 - Memory consists of 8-bit bytes
 - Any 3 consecutive bytes form a word (24 bits)
 - Total of 32768 (2¹⁵) bytes in the computer memory

- Registers
 - Five registers
 - Each register is 24 bits in length

Mnemonic	Number	Special use
Α	0	Accumulator
Χ	1	Index register
L	2	Linkage register
PC	8	Program counter
SW	9	Status word

- Data Formats
 - Integers are stored as 24-bit binary number
 - 2's complement representation for negative values
 - Characters are stored using 8-bit ASCII codes
 - No floating-point hardware on the standard version of SIC

- Instruction Formats
 - Standard version of SIC
 - 24 bits

The flag bit x is used to indicate indexed-addressing mode

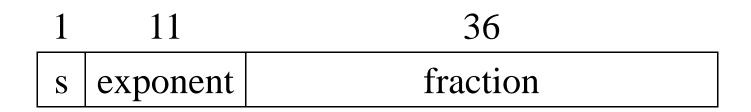
- Addressing Modes
 - There are two addressing modes available
 - Indicated by x bit in the instruction

Mode	Indication	Target address calculation
Direct	x=0	TA=address
Indexed	x-1	TA-address+(X)

(X): the contents of register X

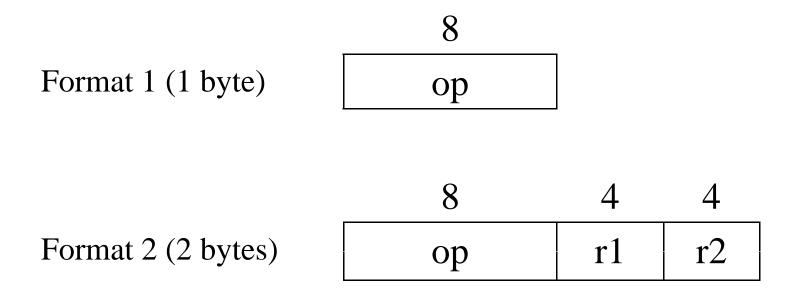
- Instruction Set
 - Load and store registers
 - LDA, LDX, STA, STX, etc.
 - Integer arithmetic operations
 - ADD, SUB, MUL, DIV
 - All arithmetic operations involve register A and a word in memory, with the result being left in A
 - COMP
 - Conditional jump instructions
 - JLT, JEQ, JGT
 - Subroutine linkage
 - JSUB, RSUB
- See appendix A, Pages 495-498

- Input and Output
 - Input and output are performed by transferring
 1 byte at a time to or from the rightmost 8 bits
 of register A
 - Test Device TD instruction
 - Read Data (RD)
 - Write Data (WD)


SIC/XE Machine Architecture

- Memory
 - Maximum memory available on a SIC/XE system is 1 megabyte (2²⁰ bytes)

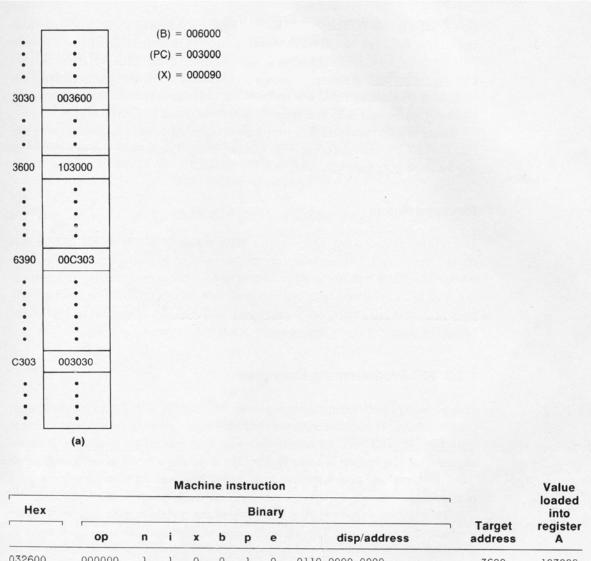
- Registers
 - Additional registers are provided by SIC/XE


Mnemonic	Number	Special use
В	3	Base register
S	4	General working register
Т	5	General working register
F	6	Floating-point accumulator (48 bits)

• There is a 48-bit floating-point data type

F*2^(e-1024)

- Instruction Formats
 - 15 bits in (SIC), 20 bits in (SIC/XE)



Formats 1 and 2 are instructions that do not reference memory at all

	Format 3 (3 bytes)	
6	$1 \ 1 \ 1 \ 1 \ 1 \ 1$	12
op	n i x b p e	disp
	Format 4 (5 bytes)	
6	1 1 1 1 1 1	20
op	n i x b p e	address

Mode	Indication	Target add	lress calculation
Base relative	b=1,p=0	TA=(B)+disp	(0≤disp ≤4095)
Program-counter relative	b=0,p=1	TA=(PC)+disp	(-2048≤disp ≤2047)

• Instruction Formats – See Figure 1.1, P. 11.

			IV	lachi	ne ir	istru	ction							Value
Hex	(Bi	nary		000					loaded into
<u></u>	op n i x l			b	b p e disp/addres		ess		Target address	register A				
032600	000000	1	1	0	0	1	0	0110	0000	0000			3600	103000
03C300	000000	1	1	1	1	0	0	0011	0000	0000			6390	00C303
022030	000000	1	0	0	0	1	0	0000	0011	0000			3030	103000
010030	000000	0	1	0	0	0	0	0000	0011	0000			30	000030
003600	000000	0	0	0	0	1	1	0110	0000	0000			3600	103000
0310C303	000000	1	1	0	0	0	1	0000	1100	0011	0000	0011	C303	003030
								(b)						

Figure 1.1 Examples of SIC/XE instructions and addressing modes.

- Instruction Set
 - Instructions to load and store the new registers
 - LDB, STB, etc.
 - Floating-point arithmetic operations
 - ADDF, SUBF, MULF, DIVF
 - Register move instruction
 - RMO
 - Register-to-register arithmetic operations
 - ADDR, SUBR, MULR, DIVR
 - Supervisor call instruction
 - SVC

- Input and Output
 - There are I/O channels that can be used to perform input and output while the CPU is executing other instructions

SIC Programming Examples

- Figure 1.2
 - Sample data movement operations
- Figure 1.3
 - Sample arithmetic operations
- Figure 1.4
 - Sample looping and indexing operations
- Figure 1.5
 - Sample looping and indexing operations
- Figure 1.6
 - I/O
- Figure 1.7
 - Subroutine call

	LDA	FIVE	LOAD CONSTANT 5 INTO REGISTER A
	STA	ALPHA	STORE IN ALPHA
	LDCH	CHARZ	LOAD CHARACTER 'Z' INTO REGISTER A
	STCH	C1	STORE IN CHARACTER VARIABLE C1
	anti an		
ALPHA	RESW	1	ONE-WORD VARIABLE
FIVE	WORD	5	ONE-WORD CONSTANT
CHARZ	BYTE	C'Z'	ONE-BYTE CONSTANT
C1	RESB	1	ONE-BYTE VARIABLE
01	THEE	ang ta sha or a	
			(a)
			(~)
		and states and the	
	LDA	#5	LOAD VALUE 5 INTO REGISTER A
	STA	ALPHA	STORE IN ALPHA
	LDA	#90	LOAD ASCII CODE FOR 'Z' INTO REG A
	STCH	C1	STORE IN CHARACTER VARIABLE C1
ALPHA	RESW	1	ONE-WORD VARIABLE
C1	RESB	1	ONE-BYTE VARIABLE
			(b)

Figure 1.2 Sample data movement operations for (a) SIC and (b) SIC/XE.

	ADD SUB STA LDA	INCR ONE BETA	ADD THE VALUE OF INCR SUBTRACT 1
	STA		SUBTRACT I
		BETA	
	LDA	~~~~~	STORE IN BETA
		GAMMA	LOAD GAMMA INTO REGISTER A
	ADD	INCR	ADD THE VALUE OF INCR
	SUB	ONE	SUBTRACT 1
	STA	DELTA	STORE IN DELTA
	·		
	•		
ONE	WORD	1	ONE-WORD CONSTANT
UNE	WOILD	-	ONE-WORD VARIABLES
ALPHA	RESW	1	ONE WORD VARIABLES
BETA		1	
	RESW	1	
	RESW	1	
	RESW	1	
-	TLOW	1	
			(a)
			.,
	LDS	INCR	LOAD VALUE OF INCR INTO REGISTER S
	LDA	ALPHA	LOAD ALPHA INTO REGISTER A
	ADDR	S,A	ADD THE VALUE OF INCR
	SUB	#1	SUBTRACT 1
	STA	BETA	STORE IN BETA
	LDA	GAMMA	LOAD GAMMA INTO REGISTER A
	ADDR	S,A	ADD THE VALUE OF INCR
	SUB	#1	SUBTRACT 1
	STA	DELTA	STORE IN DELTA
			LENAME DISAS DATABATATA SUBLICITY AN
•			ONE WORD VARIABLES
ALPHA	RESW	1	
BETA	RESW	1	
GAMMA	RESW	1	
DELTA	RESW	1	
INCR	RESW	1	
			(b)

	LDX	ZERO	INITIALIZE INDEX REGISTER TO 0
MOVECH	LDCH	STR1,X	LOAD CHARACTER FROM STR1 INTO REG A
	STCH		
	TIX	ELEVEN	
	JLT	MOVECH	
STR1	BYTE	C'TEST	STRING' 11-BYTE STRING CONSTANT
STR2	RESB	11	11-BYTE VARIABLE
			ONE-WORD CONSTANTS
ZERO	WORD	0	
ELEVEN	WORD	11	
			(a)
	LDT	#11	INITIALIZE REGISTER T TO 11
	LDX	#0	INITIALIZE INDEX REGISTER TO 0
MOVECH	LDCH	STR1,X	LOAD CHARACTER FROM STR1 INTO REG A
	STCH	STR2,X	STORE CHARACTER INTO STR2
	TIXR	Т	ADD 1 TO INDEX, COMPARE RESULT TO 11
	JLT	MOVECH	LOOP IF INDEX IS LESS THAN 11
STR1	BYTE	C'TEST	STRING' 11-BYTE STRING CONSTANT
STR2	RESB	11	11-BYTE VARIABLE
			(b)
Figu	re 1.4	Sample loo	oping and indexing operations for (a) SIC and
	SIC/XE.	ALC: NO	

	LDA	ZERO	INITIALIZE INDEX VALUE TO 0
	STA	INDEX	
ADDLP	LDX	INDEX	LOAD INDEX VALUE INTO REGISTER X
	LDA	ALPHA, X	LOAD WORD FROM ALPHA INTO REGISTER A
	ADD	BETA, X	ADD WORD FROM BETA
	STA	GAMMA, X	STORE THE RESULT IN A WORD IN GAMMA
	LDA	INDEX	ADD 3 TO INDEX VALUE
	ADD	THREE	
	STA	INDEX	
	COMP	К300 -	COMPARE NEW INDEX VALUE TO 300
	JLT	ADDLP	LOOP IF INDEX IS LESS THAN 300
INDEX	RESW	1	ONE-WORD VARIABLE FOR INDEX VALUE
			ARRAY VARIABLES100 WORDS EACH
ALPHA	RESW	100	
BETA	RESW	100	
GAMMA	RESW	100	
			ONE-WORD CONSTANTS
ZERO	WORD	0	
K300	WORD	300	
THREE	WORD	3	
			(a)
	LDS	#3	INITIALIZE REGISTER S TO 3
	LDT	#300	INITIALIZE REGISTER T TO 300
	LDX	#0	INITIALIZE INDEX REGISTER TO 0
ADDLP	LDA	ALPHA, X	LOAD WORD FROM ALPHA INTO REGISTER A
ADDDE	ADD	BETA, X	ADD WORD FROM ALPHA INTO REGISTER A
	STA	GAMMA, X	STORE THE RESULT IN A WORD IN GAMMA
	ADDR	S,X	ADD 3 TO INDEX VALUE
	COMPR	X,T	COMPARE NEW INDEX VALUE TO 300
	JLT	ADDLP	LOOP IF INDEX VALUE IS LESS THAN 300
	OLI	ADDLP	LOOP IF INDEX VALUE IS LESS THAN 300
	•		
	•		
			ADDAY WADTADLEG 100 MODDG DAGU
ALPHA	DECH	100	ARRAY VARIABLES100 WORDS EACH
	RESW	100	
BETA	RESW	100 100	
GAMMA	RESW	100	
			(b)
Fie		Comple indevi	and looping operations for (a) QIQ and
•		sample indexi	ng and looping operations for (a) SIC and
(D)	SIC/XE.		

INLOOP	TD JEQ RD STCH	INDEV INLOOP INDEV DATA	TEST INPUT DEVICE LOOP UNTIL DEVICE IS READY READ ONE BYTE INTO REGISTER A STORE BYTE THAT WAS READ
OUTLP	TD JEQ LDCH WD	OUTDEV OUTLP DATA OUTDEV	TEST OUTPUT DEVICE LOOP UNTIL DEVICE IS READY LOAD DATA BYTE INTO REGISTER A WRITE ONE BYTE TO OUTPUT DEVICE
INDEV OUTDEV DATA	BYTE BYTE RESB	X'F1' X'05' 1	INPUT DEVICE NUMBER OUTPUT DEVICE NUMBER ONE-BYTE VARIABLE

Figure 1.6 Sample input and output operations for SIC.

	JSUB	READ	CALL READ SUBROUTINE
			SUBROUTINE TO READ 100-BYTE RECORD
READ	LDX	ZERO	INITIALIZE INDEX REGISTER TO 0
RLOOP	TD	INDEV	TEST INPUT DEVICE
RLOOP			
	JEQ	RLOOP	LOOP IF DEVICE IS BUSY
	RD	INDEV	READ ONE BYTE INTO REGISTER A
	STCH	RECORD, X	STORE DATA BYTE INTO RECORD
	TIX	K100	ADD 1 TO INDEX AND COMPARE TO 100
	JLT	RLOOP	LOOP IF INDEX IS LESS THAN 100
	RSUB		EXIT FROM SUBROUTINE
INDEV	BYTE	X'F1'	INPUT DEVICE NUMBER
RECORD	RESB	100	100-BYTE BUFFER FOR INPUT RECORD
			ONE-WORD CONSTANTS
ZERO	WORD	0	
K100	WORD	100	
			(a)
	JSUB	READ	CALL READ SUBROUTINE
			SUBROUTINE TO READ 100-BYTE RECORD
READ	LDX	#0	INITIALIZE INDEX REGISTER TO 0
	LDT	#100	INITIALIZE REGISTER T TO 100
RLOOP	TD	INDEV	TEST INPUT DEVICE
RLOOP			
	JEQ	RLOOP	LOOP IF DEVICE IS BUSY
	RD	INDEV	READ ONE BYTE INTO REGISTER A
	STCH	RECORD, X	STORE DATA BYTE INTO RECORD
	TIXR	Т	ADD 1 TO INDEX AND COMPARE TO 100
	JLT	RLOOP	LOOP IF INDEX IS LESS THAN 100
	RSUB		EXIT FROM SUBROUTINE
TNIDEV		X'F1'	TNDIM DEVICE NUMPER
INDEV	BYTE	X'F1'	INPUT DEVICE NUMBER
INDEV RECORD	BYTE RESB	X'F1' 100	INPUT DEVICE NUMBER 100-BYTE BUFFER FOR INPUT RECORD

(b)

Figure 1.7 Sample subroutine call and record input operations for (a) SIC and (b) SIC/XE.