Chapter 1 Background

Professor Gwan-Hwan Hwang
Dept. Computer Science and Information Engineering
National Taiwan Normal University



Definition of System Software
from Wik

A System software (or systems software) is
computer software designed to operate and
control the computer hardware and to
provide a platform for running application
software



Definition of System Software
from Wi ki ( C

A System software includes the following:

I The operating system (prominent examples
being z/OS, Microsoft Windows, Mac OS X

and Linux),

Aallows the parts of a computer to work together by
performing tasks like transferring data between
memory and disks or rendering output onto a display
device. It also provides a platform to run higlel
system software and application software.



Definition of System Software
from Wi ki ( C

A System software includes the following:

I Utility software helps to analyze, configure,
optimize, and maintain the computer.

I Device drivers such as computer BIOS and
device firmware provide basic functionality to
operate and control the hardware connected to
or built into the computer.



Definition of System Software
from Wi ki ( C

A System software includes the following:

I Window systems are components of a graphical
user interface (GUI), and more specifically of a
desktop environment, which supports the
Implementation of window managers, and
provides basic support for graphics hardware,
pointing devices such as mouse, and keyboards.
The mouse cursor Is also generally drawn by
the windowing system.



Definition of System Software
from Wi ki ( C

A System software includes the following:

I In some publications, the term system software
also includes software development tools (like a
compiler, linker or debugger).

I In contrast to system software, software that
allows users to do things like create text
documents, play games, listen to music, or surf
the web Is called application software.



Definition of System
Programming from Wikl

A System programming (or systems programming) is the
activity of computer programming system software.

A The primary distinguishing characteristic of systems
programming when compared to application programming
IS that application programming aims to produce software
which provides services to the user (e.g. word processor),
whereas systems programming aims to produce software
which provides services to the computer hardware (e.g.

disk defragmenter).
A It requires a greater degree of hardware awareness



Definition from ChatGPT

A System software refers to a type of software designed to manage and control
computer hardware, providing an environment for application software to run
efficiently. Its primary function is to act as a bridge between the user and the
hardware, ensuring the computer operates smoothly.

A The main types of system software include:

i Operating Systems (OS): These manage the computer's resources and provide an environment
for application software to run. Examples include Windows, macOS, and Linux.

i Device Drivers: These help the operating system communicate with hardware devices such as
graphic cards, network adapters, and printers.

I Utility Programs: These are tools for system maintenance and management, such as disk
management, backup software, and file compression utilities.

i Firmware: Lowlevel software embedded in hardware devices that controls basic operations of
the hardware.
A Together, these types of system software ensure that hardware and application
software work in harmony, allowing the computer to function properly.



Outlines

A 1.1Introduction
A 1.2 System Software and Machine Architecture

A 1.3 The Simplified Instructional Computer (SIC)
I SIC Machine Architecture
I SIC/XE Machine Architecture
I SIC Programming Examples

A 1.4 Traditional (CISC) Machines
A 1.5 RISC Machines



Introduction

A Definition of System software

I System software consists of a variety of
programs that support the operation of a
computer

A Examples

I Text editor, compiler, loader or linker,
debugger, macro processors, operating system,
database management systems, software
engineering tools, etc.

10



System Software and Machine
Architecture

A One characteristic in which most system
software differs from application software Is
machine dependency

A System programs are intended to support
the operation and use of the computer itself,
rather than any particular application.

I E.g. Assemblers, compilers, operating systems

11



System Software and Machine
Archi tectur e

A There are some aspects of system software
that do not directly depend upon the type of
computing system being supported

I The second para. of Section 1.2

12



System Software and Machine

Archi tectur e

A Because most system software is machine
dependent, we must include real machines
and real pieces of software In our study.

A Simplified Instructional Computer (SIC)

I SIC is a hypothetical computer that has been
carefully designed to include the hardware
features most often found on real machines,
while avoiding unusual or irrelevant

complexities

13



The Simplified Instructional
Computer (SIC)

A Like many other products, SIC comes in two
versions
I The standard model
I An XE version
Afflextra equi pment so, Nextra e:
A The two versions has been designed tofeard
compatible

I An object program for the standard SIC machine will
also execute properly on a SIC/XE system

14



Von Neumann architecture

A A computer architecture based on a 1945
description by John von Neumann

A A processing unit with both an
Memory (stores both instructions and data) arithmetic logic unit and a
control unit
I A control unit that includes

nstructions and data an instructiorregister and a
Y program counter

Results of |

A Memory that storeslataand
Ari;[(f)lg?ftlicn;nd C(LJlr:]tigol ~<— Input and output devices InStrU CthﬂS

A Input andoutput mechanisms

A Singlebus system

Central processing unit CPU

15



SIC Machine Architecture

A Memory
I Memory consists of -®it bytes
I Any 3 consecutive bytes form a word (24 bits)

i Total of 32768 (&) bytes in the computer
memory

16



SI C Machi ne Ar ch

A Registers
I Five registers
I Each register is 24 bits in length

Mnemonic Number Special use
A 0 Accumulator
X 1 Index register
L 2 Linkage register
PC 8 Program counter
SW o) Status word

17



SI C Machi ne Ar chi

A Data Formats
I Integers are stored as-b4t binary number

120s compl ement represe
values

I Characters are stored usindp® ASCII codes

I No floating-point hardware on the standard
version of SIC

18



Ar c h i

SI C Machi ne
A Instruction Formats
I Standard version of SIC
I 24 bits
8 1 15
opcode |X address

The flag bitx is used to indicate indexetldressing mode

19



SI C Machi ne Ar chi

A Addressing Modes

I There are two addressing modes available
Alndicated by x bit in the instruction

Mode Indication  Target address calculation
Direct x=0 TA=address
Indexed x=1 TA=address+(X)

(X): the contents of register X

20



SI C Machi ne Ar chi

A Instruction Set
I Load and store registers
A LDA, LDX, STA, STX, etc.
I Integer arithmetic operations

A ADD, SUB, MUL, DIV

A All arithmetic operations involve register A and a word in memory,
with the result being left in A

i COMP

I Conditional jump instructions
A JLT, JEQ, JGT

I Subroutine linkage
A JSUB, RSUB

A See appendix A, Pages 4998

21



SI C Machi ne Ar chi

A Input and Output

I Input and output are performed by transferring
1 byte at a time to or from the rightmost 8 bits
of register A

ATest Device TD instruction
ARead Data (RD)
AWrite Data (WD)

22



SIC/XE Machine Architecture

A Memory

I Maximum memory available on a SIC/XE
system is 1 megabyte{bytes)

23



SI C/ XE Machi ne Arc

A Registers

I Additional registers are provided by SIC/XE

Mnemonic Number

Special use

B 3

S 4
T 5
F 6

Base register
General working register
General working register

Floatingpoint accumulator (48 bits)

24



SI C/ XE Machi ne Arc

A There is a 4&it floating-point data type

1 11 36
S | exponent fraction

F*2(e-1024)

25



SI C/ XE Machi

A Instruction Formats
I 15 bits in (SIC), 20 bits in (SIC/XE)

Format 1 (1 byte)

Format 2 (2 bytes)

Formats 1 and 2 are instructions that do not reference memory «

n e

38

Oop

38 4 4
op rl 2

Ar c




SI C/ XE Machi ne Arc
Format 3 (3 bytes)

6 111111 12
op nii|xbiple disp
Format 4 (5 bytes)
6 111111 20
op nii|x/blple address
Mode Indication Target address calculation

Base relative  b=1,p=0 TA=(B)+disp (@disp¢4095)

Programcounter TA=(PC)+disp {2048 disp¢2047)

relative b=0,p=1

27



SI C/ XE Machi ne Arc

A Instruction Formats
i See Figure 1.1, P. 11.

28



(B) = 006000
. L]
. B (PC) = 003000
. K
5 . (X) = 000090
3030 003600
. .
. .
. .
3600 103000
. .
. .
. .
. L]
. .
6390 00C303
. .
. .
. .
. .
. .
. .
C303 003030
L] .
. .
. >
. .
(a)
Machine instruction Value
r == loaded
Hex Binary into
T T 5 Target register
op NS wE S hEsp et disp/address address A
032600 000000 1 1 0k 0T ek F0 J0110 /00000000 3600 103000
03C300 000000 o] e A 0= D01 1000020000 6390 00C303
022030 000000 108 S oss0R s E i0s 000070011 0000 3030 103000
010030 000000 0 1= C0iEe= 00 20000/0011:0000 30 000030
003600 000000 00} R0 O] 8 SRR g T0: 000020000 3600 103000
0310C303 000000 1 10 0 S0 -0 51§ 60005 110050011 00000011 €303 003030
(b)

Figure 1.1 Examples of SIC/XE instructions and addressing modes.

29



SI C/ XE Machi ne Arc

A Instruction Set

I Instructions to load and store the new registers
A LDB, STB, etc.

I Floatingpoint arithmetic operations
A ADDF, SUBF, MULF, DIVF

I Register move Iinstruction
A RMO

I Registerto-register arithmetic operations
A ADDR, SUBR, MULR, DIVR

I Supervisor call instruction
A SvC

30



SI C/ XE Machi ne Arc

A Input and Output

i There are 1/O channels that can be used to
perform input and output while the CPU is
executing other instructions

31



SIC Programming Examples

A Figure 1.2

I Sample data movement operations
A Figure 1.3

I Sample arithmetic operations
A Figure 1.4

I Sample looping and indexing operations
A Figure 1.5

I Sample looping and indexing operations
A Figure 1.6

i 1/0
A Figure 1.7

I Subroutine call
32



ALPHA
FIVE
CHARZ
¢l

ALPHA
343

LDA
STA
LDCH
STCH

RESW
WORD
BYTE
RESB

LDA
STA
LDA
STCH

RESB

FIVE
ALPHA
CHARZ
&l

R QuR
N

#5
ALPHA
#90
Cl

LOAD CONSTANT 5 INTO REGISTER A
STORE IN ALPHA

LOAD CHARACTER ’'Z’ INTO REGISTER A
STORE IN CHARACTER VARIABLE Cl

ONE-WORD VARIABLE
ONE-WORD CONSTANT
ONE-BYTE CONSTANT
ONE-BYTE VARIABLE

(a)

LOAD VALUE 5 INTO REGISTER A

STORE IN ALPHA

LOAD ASCII CODE FOR ’'Z’ INTO REG A
STORE IN CHARACTER VARIABLE C1l

ONE-WORD VARIABLE
ONE-BYTE VARIABLE

(b)

Figure 1.2 Sample data movement operations for (a) SIC and

(b) SIC/XE.



ONE
ALPHA
BETA

DELTA
INCR

ALPHA
BETA

DELTA
INCR

LDS

ADDR

STA

ADDR

STA

ALPHA
INCR
ONE
BETA

INCR
ONE
DELTA

N

INCR
ALPHA
S,A
#1
BETA

S,A
#1
DELTA

e

LOAD ALPHA INTO REGISTER A
ADD THE VALUE OF INCR
SUBTRACT 1

STORE IN BETA

LOAD GAMMA INTO REGISTER A
ADD THE VALUE OF INCR
SUBTRACT 1

STORE IN DELTA

ONE-WORD CONSTANT
ONE-WORD VARIABLES

(@)

LOAD VALUE OF INCR INTO REGISTER S
LOAD ALPHA INTO REGISTER A

ADD THE VALUE OF INCR

SUBTRACT 1

STORE IN BETA

LOAD GAMMA INTO REGISTER A

ADD THE VALUE OF INCR

SUBTRACT 1

STORE IN DELTA

ONE WORD VARIABLES

(b)

Figure 1.3 Sample arithmetic operations for (a) SIC and (b) SIC/XE.

34



MOVECH LDCH
STCH

TIX

LT

STR1 BYTE
STR2 RESB
ZERO WORD
ELEVEN WORD
LDT

LDX
MOVECH LDCH
STCH
TEXR

JET
STR1 BYTE
STR2 RESB
Figure 1.4

(b) SIC/XE.

ZERO INITIALIZE INDEX REGISTER TO 0

STRL, X LOAD CHARACTER FROM STR1 INTO REG A
STR2, X STORE CHARACTER INTO STR2

ELEVEN ADD 1 TO INDEX, COMPARE RESULT TO 11
MOVECH LOOP IF INDEX IS LESS THAN 11

C’TEST STRING’  11-BYTE STRING CONSTANT

1t 11-BYTE VARIABLE

ONE-WORD CONSTANTS
0
11
(a)

#11 INITIALIZE REGISTER T TO 11
#0 INITIALIZE INDEX REGISTER TO 0
STR1,X LOAD CHARACTER FROM STR1 INTO REG A
STR2, X STORE CHARACTER INTO STR2

T ADD 1 TO INDEX, COMPARE RESULT TO 11
MOVECH LOOP IF INDEX IS LESS THAN 11

C’TEST STRING’  11-BYTE STRING CONSTANT

11 11-BYTE VARIABLE

(b)
Sample looping and indexing operations for (a) SIC and 35



36



