
Chapter 9 Subprograms

We now explore the design of subprograms,
including parameter-passing methods, local
referencing environment, overloaded subprograms,
generic subprograms, and the aliasing and
problematic side effects.

9.1 Introduction

• Two fundamental abstraction facilities
– Process abstraction

• Emphasized from early days
• Discussed in this chapter

– Data abstraction
• Emphasized in the1980s
• Discussed at length in Chapter 11

2

9.2 Fundamentals of
Subprograms

• All subprograms have the following
characteristics
– Each subprogram has a single entry point
– The calling program is suspended during

execution of the called subprogram
– Control always returns to the caller when the

called subprogram’s execution terminates

9.2.2 Basic Definitions
• A subprogram definition describes the interface to and the

actions of the subprogram abstraction
• A subprogram call is an explicit request that the subprogram

be executed
• A subprogram header is the first part of the definition,

including the name, the kind of subprogram, and the formal
parameters
– Python: def adder (parameters):
– JavaScript: function
– C: void adder (parameters)

• In Python, function def statements are executable.
– Until a function’s def has been execution, the function cannot be

called

9.2.2 Basic Definitions
• The parameter profile of a subprogram is the

number, order, and types of its parameters
• The protocol is a subprogram’s parameter profile

and, if it is a function, its return type
• Subprograms can have declarations as well as

definitions

9.2.2 Basic Definitions
(continued)

• Function declarations in C and C++ are often called
prototypes

• A subprogram declaration provides the protocol, but not
the body, of the subprogram
main(){

int foo(int);
…

i=foo(j);

}

int foo(int x)

{

…

}
6

9.2.3 Parameters

• There are two ways that a non-method
subprogram can gain access to the data that it is to
process
– Direct access to nonlocal variables
– Parameter passing

• A formal parameter is a dummy variable listed in
the subprogram header and used in the
subprogram

• An actual parameter represents a value or address
used in the subprogram call statement

9.2.3 Parameters

• Positional
– The binding of actual parameters to formal parameters is by position:

the first actual parameter is bound to the first formal parameter and so
forth

– Safe and effective

• Keyword
– The name of the formal parameter to which an actual parameter is to

be bound is specified with the actual parameter
– Advantage: Parameters can appear in any order, thereby avoiding

parameter correspondence errors
– Disadvantage: User must know the formal parameter’s names

Formal Parameter Default Values
• In certain languages (e.g., C++, Python, Ruby, PHP), formal

parameters can have default values (if no actual parameter is passed)

– In C++, default parameters must appear last because parameters are
positionally associated (no keyword parameters)

• Variable numbers of parameters
– C and C++: Ellipsis (…)
– C# methods can accept a variable number of parameters as long as

they are of the same type—the corresponding formal parameter is
an array preceded by params

– In Ruby, the actual parameters are sent as elements of a hash literal
and the corresponding formal parameter is preceded by an asterisk.

Procedures and Functions
• There are two categories of subprograms

– Procedures are collection of statements that define
parameterized computations

– Functions structurally resemble procedures but are
semantically modeled on mathematical functions

• They are expected to produce no side effects
• In practice, program functions have side effects

Design Issues for Subprograms
• Are local variables static or dynamic?
• Can subprogram definitions appear in other subprogram definitions?
• What parameter passing methods are provided?
• Are parameter types checked?
• If subprograms can be passed as parameters and subprograms can be nested, what

is the referencing environment of a passed subprogram?
• Are functional side effects allowed?
• What types of values can be returned from functions?
• How many values can be returned from functions?
• Can subprograms be overloaded?
• Can subprogram be generic?
• If the language allows nested subprograms, are closures supported?

Local Referencing Environments
• Local variables can be stack-dynamic

- Advantages
• Support for recursion
• Storage for locals is shared among some subprograms

– Disadvantages
• Allocation/de-allocation, initialization time
• Indirect addressing
• Subprograms cannot be history sensitive

• Local variables can be static
– Advantages and disadvantages are the opposite of those for stack-

dynamic local variables

Local Referencing Environments: Examples

• In most contemporary languages, locals are stack
dynamic

• In C-based languages, locals are by default stack
dynamic, but can be declared static

• The methods of C++, Java, Python, and C# only
have stack dynamic locals

• In Lua, all implicitly declared variables are global;
local variables are declared with local and are
stack dynamic

9.5 Parameter-Passing Methods

• Parameter-passing methods are the ways in
which parameters are transmitted to and/or
from called subprograms

• Issues:
– Semantics models
– Implementation models
– Design choices

14

9.5.1 Semantics Models of
Parameters Passing

• Three distinct semantics models
– (1) Receive data from the corresponding actual

parameter
• In mode

– (2) Transmit data to the actual parameter
• Our mode

– (3) Both
• Inout mode

15

Models of Parameter Passing

9.5.2 Implementation Models of
Parameter Passing

• Pass-by-value
– In mode
– Normally implemented by copy
– Or, implemented by transmitting an access path

to the value of the actual parameter in the caller
• Write-protected is necessary

17

9.5.2 Implementation Models of
Parameter Passing

• Pass-by-result
– Out mode
– No value is transmitted to the subprogram
– Need extra copy
– Problems

• Actual parameter collision
• How to choose between two different time to

evaluate the addresses of the actual parameters

18

9.5.2 Implementation Models of
Parameter Passing

• Pass-by-Value-Result
– Inout mode
– Sometimes called pass-by-copy
– It shares with pass-by-value and pass-by-result

the disadvantages of them.
– The advantages of pass-by-value-result are

relative to pass-by-reference.

19

9.5.2 Implementation Models of
Parameter Passing

• Inout mode
• It transmits an access path (usually an address) to

the called subprogram
• Advantage:

– Efficient in terms of both time and space
• Disadvantage:

– Slow
– Unreliable
– Alias may be created.

20

9.5.2 Implementation Models of
Parameter Passing

• Pass-by-Name
– Inout mode
– The actually parameter is, in effect, textually substituted for the

corresponding formal parameter in all its occurrences in the
subrpograms

• Consider the following program in pass-by-name

void swap(int a, int b){

int temp;

temp=a;

a=b;

b=temp;}

main(){

int value=2, list[5]={1,3,5,7,9};

swap(value, list[value]);

}

21

9.5.3 Implementing Parameter-
Passing Methods

• In most languages parameter
communication takes place thru the run-
time stack

• Pass-by-reference are the simplest to
implement; only an address is placed in the
stack

• See next slice.

22

Implementing Parameter-Passing Methods

Function header: void sub(int a, int b, int c, int d)

Function call in main: sub(w, x, y, z)
(pass w by value, x by result, y by value-result, z by reference)

Parameter Passing Methods of Major Languages

• C
– Pass-by-value
– Pass-by-reference is achieved by using pointers as parameters

• C++
– A special pointer type called reference type for pass-by-reference

• Java
– All parameters are passed are passed by value
– Object parameters are passed by reference

Parameter Passing Methods of Major Languages
(continued)

• Fortran 95+
- Parameters can be declared to be in, out, or inout mode

• C#
- Default method: pass-by-value
– Pass-by-reference is specified by preceding both a formal parameter

and its actual parameter with ref

• PHP: very similar to C#, except that either the actual or the
formal parameter can specify ref

• Perl: all actual parameters are implicitly placed in a
predefined array named @_

• Python and Ruby use pass-by-assignment (all data values are
objects); the actual is assigned to the formal
– Check the text book for details.

9.5.5 Type Checking Parameters

• Considered very important for reliability
• FORTRAN 77 and original C: none
• Pascal and Java: it is always required
• ANSI C and C++: choice is made by the user

– Prototypes

• Relatively new languages Perl, JavaScript, and PHP do not
require type checking

• In Python and Ruby, variables do not have types (objects
do), so parameter type checking is not possible

9.5.6 Multidimensional Arrays as Parameters

• If a multidimensional array is passed to a
subprogram and the subprogram is separately
compiled, the compiler needs to know the
declared size of that array to build the storage
mapping function

Multidimensional Arrays as Parameters: C and
C++

• Programmer is required to include the
declared sizes of all but the first subscript in
the actual parameter

• Disallows writing flexible subprograms
• Solution: pass a pointer to the array and the

sizes of the dimensions as other parameters;
the user must include the storage mapping
function in terms of the size parameters

Multidimensional Arrays as Parameters: Java
and C#

• Similar to Ada
• Arrays are objects; they are all single-

dimensioned, but the elements can be arrays
• Each array inherits a named constant (length

in Java, Length in C#) that is set to the length
of the array when the array object is created

