Chapter 9 Subprograms

We now explore the design of subprograms,
including parameter-passing methods, local
referencing environment, overloaded subprograms,
generic subprograms, and the aliasing and
problematic side effects.



9.1 Introduction

« Two fundamental abstraction facilities

— Process abstraction
 Emphasized from early days
 Discussed in this chapter

— Data abstraction
* Emphasized in the1980s
 Discussed at length in Chapter 11



9.2 Fundamentals of
Subprograms

* All subprograms have the following
characteristics
— Each subprogram has a single entry point

— The calling program 1s suspended during
execution of the called subprogram

— Control always returns to the caller when the
called subprogram’s execution terminates



9.2.2 Basic Detinitions

A subprogram definition describes the interface to and the
actions of the subprogram abstraction

A subprogram call 1s an explicit request that the subprogram
be executed

A subprogram header is the first part of the definition,
including the name, the kind of subprogram, and the formal
parameters

— Python: def adder (parameters):

— JavaScript: function

— C: void adder (parameters)

In Python, function def statements are executable.

— Until a function’s def has been execution, the function cannot be
called



9.2.2 Basic Detinitions

* The parameter profile of a subprogram 1s the
number, order, and types of its parameters

* The protocol 1s a subprogram’s parameter profile
and, 1f 1t 1s a function, its return type

* Subprograms can have declarations as well as
definitions



9.2.2 Basic Definitions
(continued)

 Function declarations in C and C++ are often called

prototypes
* A subprogram declaration provides the protocol, but not

the body, of the subprogram

main () {

int foo(int) ;

i=foo(J);
}

int foo(int x)

{

}



0.2.3 Parameters

* There are two ways that a non-method
subprogram can gain access to the data that it 1s to
process

— Direct access to nonlocal variables

— Parameter passing

* A formal parameter 1s a dummy variable listed in
the subprogram header and used 1n the
subprogram

* An actual parameter represents a value or address
used in the subprogram call statement



0.2.3 Parameters

e Positional

— The binding of actual parameters to formal parameters is by position:
the first actual parameter 1s bound to the first formal parameter and so

forth
— Safe and effective

« Keyword

— The name of the formal parameter to which an actual parameter is to
be bound 1s specified with the actual parameter

— Advantage: Parameters can appear in any order, thereby avoiding
parameter correspondence errors

— Disadvantage: User must know the formal parameter’s names



Formal Parameter Default Values

* In certain languages (e.g., C++, Python, Ruby, PHP), formal
parameters can have default values (if no actual parameter 1s passed)

— In C++, default parameters must appear last because parameters are
positionally associated (no keyword parameters)

* Variable numbers of parameters
— Cand C++: Ellipsis (...)

— C# methods can accept a variable number of parameters as long as
they are of the same type—the corresponding formal parameter is
an array preceded by params

— In Ruby, the actual parameters are sent as elements of a hash literal
and the corresponding formal parameter 1s preceded by an asterisk.



Procedures and Functions

* There are two categories of subprograms

— Procedures are collection of statements that define
parameterized computations

— Functions structurally resemble procedures but are
semantically modeled on mathematical functions

» They are expected to produce no side effects

* In practice, program functions have side effects



Design Issues for Subprograms

Are local variables static or dynamic?

Can subprogram definitions appear in other subprogram definitions?
What parameter passing methods are provided?

Are parameter types checked?

If subprograms can be passed as parameters and subprograms can be nested, what
is the referencing environment of a passed subprogram?

Are functional side effects allowed?

What types of values can be returned from functions?

How many values can be returned from functions?

Can subprograms be overloaded?

Can subprogram be generic?

If the language allows nested subprograms, are closures supported?



Local Referencing Environments

» Local variables can be stack-dynamic

- Advantages
» Support for recursion
« Storage for locals 1s shared among some subprograms
— Disadvantages
» Allocation/de-allocation, initialization time
 Indirect addressing

» Subprograms cannot be history sensitive

 [ocal variables can be static

— Advantages and disadvantages are the opposite of those for stack-
dynamic local variables



Local Referencing Environments: Examples

In most contemporary languages, locals are stack
dynamic

In C-based languages, locals are by default stack
dynamic, but can be declared static

The methods of C++, Java, Python, and C# only
have stack dynamic locals

In Lua, all implicitly declared variables are global;
local variables are declared with 10ca1 and are
stack dynamic




9.5 Parameter-Passing Methods

* Parameter-passing methods are the ways 1n
which parameters are transmitted to and/or
from called subprograms

e Jssues:
— Semantics models

— Implementation models

— Design choices

14



9.5.1 Semantics Models of
Parameters Passing

e Three distinct semantics models

— (1) Receive data from the corresponding actual
parameter

* In mode

— (2) Transmit data to the actual parameter

e Our mode
— (3) Both

* ITnout mode

15



Models of Parameter Passing

Caller Callee
(sub (a, b, c)) Call (procedure sub (x, y, 2))

— T x

In mode
Return

/

Out mode
Call

/

[
< > )

Inout mode Return



9.5.2 Implementation Models of
Parameter Passing

* Pass-by-value
— In mode
— Normally implemented by copy

— Or, implemented by transmitting an access path
to the value of the actual parameter 1n the caller

« Write-protected 1s necessary

17



9.5.2 Implementation Models of
Parameter Passing

e Pass-by-result
— Out mode
— No value 1s transmitted to the subprogram
— Need extra copy
— Problems

 Actual parameter collision

* How to choose between two different time to
evaluate the addresses of the actual parameters

18



9.5.2 Implementation Models of
Parameter Passing

* Pass-by-Value-Result
— Inout mode
— Sometimes called pass-by-copy

— It shares with pass-by-value and pass-by-result
the disadvantages of them.

— The advantages of pass-by-value-result are
relative to pass-by-reference.

19



9.5.2 Implementation Models of
Parameter Passing

Inout mode

It transmits an access path (usually an address) to
the called subprogram

Advantage:
— Efficient in terms of both time and space

Disadvantage:

— Slow
— Unreliable

— Alias may be created.
20



9.5.2 Implementation Models of

Parameter Passing
e Pass-by-Name

— Inout mode

— The actually parameter is, in effect, textually substituted for the
corresponding formal parameter in all its occurrences in the
subrpograms

* Consider the following program in pass-by-name

void swap (int a, int b) {
int temp;
temp=a;
a=b;
b=temp; }
main () {
int value=2, list[5]={1,3,5,7,9};

swap (value, list[valuel]);

21



9.5.3 Implementing Parameter-
Passing Methods

* In most languages parameter
communication takes place thru the run-
time stack

» Pass-by-reference are the simplest to
implement; only an address 1s placed 1n the
stack

e See next slice.

22



Implementing Parameter-Passing Methods
main Stack function sub
_________ At start A
w ® > Valueofa |<------ - Ref.to a
X < Atend o Value of b | ® Assign to b
Sl Atstart
Y At end Valueofc [~~~ 77~ - Re:f. toc
< ° - e Assign to c
_________ Address (at start) > Code
z .~ T TTT > Address (d) @ |< - - - - - - - Ref.tod
Code
s

Function header: void sub (int a, int b, int c, int d)
Function call in main: sub (w, x, vy, z)

(pass w by value, x by result, y by value-result, z by reference)



Parameter Passing Methods of Major Languages

e C
— Pass-by-value
— Pass-by-reference 1s achieved by using pointers as parameters

e C++
— A special pointer type called reference type for pass-by-reference

 Java
— All parameters are passed are passed by value
— Object parameters are passed by reference



Parameter Passing Methods of Major Languages
(continued)

e Fortran 95+
- Parameters can be declared to be in, out, or inout mode
e C#
- Default method: pass-by-value
— Pass-by-reference is specified by preceding both a formal parameter
and its actual parameter with ref
« PHP: very similar to C#, except that either the actual or the
formal parameter can specify ref

 Perl: all actual parameters are implicitly placed in a
predefined array named @

« Python and Ruby use pass-by-assignment (all data values are
objects); the actual 1s assigned to the formal
— Check the text book for details.



9.5.5 Type Checking Parameters

Considered very important for reliability
FORTRAN 77 and original C: none
Pascal and Java: it 1s always required

ANSI C and C++: choice is made by the user

— Prototypes
Relatively new languages Perl, JavaScript, and PHP do not
require type checking

In Python and Ruby, variables do not have types (objects
do), so parameter type checking is not possible



9.5.6 Multidimensional Arrays as Parameters

 If a multidimensional array 1s passed to a
subprogram and the subprogram 1s separately
compiled, the compiler needs to know the
declared size of that array to build the storage
mapping function



Multidimensional Arrays as Parameters: C and
C++

* Programmer 1s required to include the
declared sizes of all but the first subscript in
the actual parameter

* Disallows writing flexible subprograms

* Solution: pass a pointer to the array and the
sizes of the dimensions as other parameters;
the user must include the storage mapping
function in terms of the size parameters



Multidimensional Arrays as Parameters: Java
and C#

 Similar to Ada

* Arrays are objects; they are all single-
dimensioned, but the elements can be arrays

* Each array inherits a named constant (1engtn
in Java, rength 1n C#) that 1s set to the length
of the array when the array object 1s created



