
1

Chapter 8 Statement-Level

Control Structures

In Chapter 7, the flow of control within

expressions, which is governed by operator

associativity and precedence rules, was discussed.

This chapter discusses flow of control among

statements.

8.1 Introduction

• Within expressions (Chapter 7)

• Among program units (Chapter 9)

• Among program statements (this chapter)

2

8.1 Introduction (Cont’d)

• At least two additional linguistic

mechanisms are necessary to make the

computations in programs flexible and

powerful:

– Some means of selecting among alternative

control flow paths

– Some means of causing the repeated execution

fo statements or sequences of statements

3

8.1 Introduction (Cont’d)

• Statements that provide these kinds of

capabilities are called control statements

• A control structure is a control statement

and the collection of statements whose

execution it controls

• FORTRAN I control statements were based

directly on IBM 704 hardware

4

8.1 Introduction (Cont’d)
• It was proven that all algorithms that can be

expressed by flowcharts can be coded in a

programming language with only two control

statements

– One for choosing between two control flow paths

• IF-THAN-ELSE

– One for logically controlled iterations

• WHILE

• Bohm, Corrado; Giuseppe Jacopini (May 1966). "Flow Diagrams,

Turing Machines and Languages with Only Two Formation Rules".

Communications of the ACM 9 (5): 366–371.

5

8.2 Selection Statements

• Selection statements fall into two general

categories

– Two-way

– N-way or multiple selection

6

8.2.1 Two-Way Selection Statements

• General form:

if control_expression

then clause

else clause

• Design Issues:

– What is the form and type of the control
expression?

– How are the then and else clauses
specified?

– How should the meaning of nested selectors
be specified?

7

8.2.1.2 The Control Expression

• If the then reserved word or some other

syntactic marker is not used to introduce the

then clause, the control expression is placed

in parentheses

• In C89, C99, Python, and C++, the control

expression can be arithmetic

• In most other languages, the control

expression must be Boolean
8

8.2.1.3 Clause Form
• In many contemporary languages, the then and else clauses

can be single statements or compound statements

• In Perl, all clauses must be delimited by braces (they must

be compound)

• In Fortran 95, Ada, Python, and Ruby, clauses are

statement sequences.

– The complete selection statement is terminated with a reserved

word

• Python uses indentation to define clauses

if x > y :

x = y

print " x was greater than y"

9

8.2.1.4 Nesting Selectors

• Java example

if (sum == 0)

if (count == 0)

result = 0;

else result = 1;

if (sum == 0) if (count == 0) result = 0;

else result = 1;

• Which if gets the else?

– It is the so-called dangling-else problem

10

8.2.1.4 Nesting Selectors (Cont’d)

• Solutions to dangling-else problem:

– C, C++, C#, and Java's static semantics rule:

else matches with the nearest previous if

11

8.2.1.4 Nesting Selectors (Cont’d)

• Solutions to dangling-else problem:

– Perl requires that all then and else clauses

be compound

• “{“ and “}” cannot be ignored

if (sum == 0) {

if (count == 0) {

result = 0;

}

else { result = 1; }

}

12

8.2.1.4 Nesting Selectors (Cont’d)

• Solutions to dangling-else problem:

– Fortran 95, Ada, Ruby and Rua

• Use of a special word to mark the end of the whole

selection statement

13

8.2.1.4 Nesting Selectors (Cont’d)
• Statement sequences as clauses: Ruby

if sum == 0 then

if count == 0 then

result = 0

else

result = 1

end

end

if sum == 0 then

if count == 0 then

result = 0

end

else

result = 1

end

14

8.2.1.5 Selector Expressions

• In ML, F#, and LISP, the selector is an

expression

• F#

let y =

if x > 0 then x

else 2 * x

- If the if expression returns a value, there must

be an else clause

15

8.2.1.4 Nesting Selectors (Cont’d)

• Python (By indentation)

if sum == 0 :

if count == 0 :

result = 0

else :

result = 1

if sum == 0 :

if count == 0 :

result = 0

else :

result = 1

16

8.2.2 Multiple-Selection

Statements

• The multiple-selection statement allows the

selection of one of any number of statements or

statement groups. It is, therefore, a generalization

of a selector.

– Two-way selectors can be built with a multiple selector.

– Although a multiple selector can be built from two-way

selectors and gotos,

• Cumbersome, unreliable, and difficult to write and read

17

8.2.2 Multiple-Selection

Statements (Cont’d)

• Design Issues:

1. What is the form and type of the control expression?

2. How are the selectable segments specified?

3. Is execution flow through the structure restricted to

include just a single selectable segment?

4. How are case values specified?

5. What is done about unrepresented expression values?

18

8.2.2.2 Examples of Multiple

Selectors
• C, C++, Java, and JavaScript

switch (expression) {

case const_expr1: stmt1;

…

case const_exprn: stmtn;

[default: stmtn+1]

}

• The control expression and constant expressions are some

discrete type

19

8.2.2.2 Examples of Multiple

Selectors (Cont’d)
• Design choices for C’s switch statement

1. Control expression can be only an integer type

2. Selectable segments can be statement sequences, blocks, or

compound statements

3. Any number of segments can be executed in one execution of the

construct (there is no implicit branch at the end of selectable

segments)

4. default clause is for unrepresented values (if there is no

default, the whole statement does nothing)

20

8.2.2.2 Examples of Multiple

Selectors (Cont’d)

• C#

– Differs from C in that it has a static semantics rule that

disallows the implicit execution of more than one

segment

– Each selectable segment must end with an

unconditional branch (goto or break)

– Also, in C# the control expression and the case

constants can be strings

– https://msdn.microsoft.com/zh-tw/library/aa664749(v=vs.71).aspx

21

8.2.2.2 Examples of Multiple

Selectors (Cont’d)

• C#

– Differs from C in that it has a static semantics rule that

disallows the implicit execution of more than one

segment

– Each selectable segment must end with an

unconditional branch (goto or break)

– Also, in C# the control expression and the case

constants can be strings

22

8.2.2.2 Examples of Multiple

Selectors (Cont’d)

• Ruby:

– The semantics is that the Boolean expressions

are evaluated one at a time, top to bottom.
leap = case

when year % 400 == 0 then true

when year % 100 == 0 then false

else year % 4 == 0

end

23

8.2.2.3 Implementing Multiple

Selection Structures
• Multiple conditional branches

– See the simple translation in P364

• Store case values in a table and use a linear search of the

table

• When there are more than ten cases, a hash table of case

values can be used

• If the number of cases is small and more than half of the

whole range of case values are represented, an array whose

indices are the case values and whose values are the case

labels can be used

24

8.2.2.4 Multiple Selection Using
if

• In many situations, a switch or case

statement is inadequate for multiple

selection

– E.g., when selections must be made on the basis

of a Boolean expression rather than some

ordinal type

25

8.2.4 Multiple Selection Using
if

• Multiple Selectors can appear as direct

extensions to two-way selectors, using else-

if clauses, for example in Python:

if count < 10 :

bag1 = True

elif count < 100 :

bag2 = True

elif count < 1000 :

bag3 = True

26

8.2.4 Multiple Selection Using
if

• The Python example can be written as a Ruby
case

case

when count < 10 then bag1 = true

when count < 100 then bag2 = true

when count < 1000 then bag3 = true

end

27

8.3 Iterative Statements

• The repeated execution of a statement or

compound statement is accomplished either

by iteration or recursion

• An iterative statement is one that causes a

statement or collections of statements to be

executed zero, one, or more times

– Loop

– The first iterative statements in programming

languages were directly related to arrays
28

8.3 Iterative Statements (Cont’d)

• General design issues for iteration control

statements:

1. How is iteration controlled?

2. Where is the control mechanism in the loop?

• Some terminologies:

– Body, pretest, posttest, iteration statement

29

8.3.1 Counter-Controlled Loops

• A counting iterative control statement has a

variable, called the loop variables

– Loop parameters

• Initial and terminal values

• Stepsize

• Logically controlled loops are more general than

counter-controlled loops

• Counter-controlled loops are sometimes supported

by machine instructions

30

8.3.1.1 Design Issues

1. What are the type and scope of the loop

variable?

2. Should it be legal for the loop variable or loop

parameters to be changed in the loop body,

and if so, does the change affect loop control?

3. Should the loop parameters be evaluated only

once, or once for every iteration?

31

8.3.1.2 The for Statement of the

C-based Language
• C-based languages

for ([expr_1] ; [expr_2] ; [expr_3]) statement

- The expressions can be whole statements, or even statement
sequences, with the statements separated by commas

– The value of a multiple-statement expression is the value of the last
statement in the expression

– If the second expression is absent, it is an infinite loop

• Design choices:
- There is no explicit loop variable

- Everything can be changed in the loop

- The first expression is evaluated once, but the other two

are evaluated with each iteration

- It is legal to branch into the body of a for loop in C

32

8.3.1.2 The for Statement of the

C-based Language

• C++ differs from C in two ways:

1. The control expression can also be Boolean

2. The initial expression can include variable

definitions (scope is from the definition to the

end of the loop body)

• Java and C#

– Differs from C++ in that the control

expression must be Boolean

33

8.3.1.4 The for Statement of

Python
• Python

for loop_variable in object:

- loop body

[else:

- else clause]

– The object is often a range, which is either a list of values in
brackets ([2, 4, 6]), or a call to the range function
(range(5), which returns 0, 1, 2, 3, 4

– The loop variable takes on the values specified in the given range,
one for each iteration

– The else clause, which is optional, is executed if the loop
terminates normally

34

8.3.2 Logically Controlled Loops

• In many cases, collections of statements

must be repeatedly executed, but the

repetition control is based on a Boolean

expression rather than a counter

• Design issues:

– Pretest or posttest?

– Should the logically controlled loop be a

special case of the counting loop statement or a

separate statement?

35

8.3.2.2 Examples
• C and C++ have both pretest and posttest forms, in which

the control expression can be arithmetic:

while (control_expr) do

loop body

do

loop body

while (control_expr)

- In both C and C++ it is legal to branch into the body

of a logically-controlled loop

• Java is like C and C++, except the control expression

must be Boolean (and the body can only be entered at the

beginning -- Java has no goto

36

8.3.3 User-Located Loop Control

Mechanisms

• Sometimes it is convenient for the programmers

to decide a location for loop control (other than

top or bottom of the loop)

– The most interesting question is whether a single loop

or several nested loops can be exited

• Simple design for single loops (e.g., break)

• Design issues for nested loops

1. Should the conditional be part of the exit?

2. Should control be transferable out of more than one

loop?
37

8.3.3 User-Located Loop Control

Mechanisms

• C , C++, Python, Ruby, and C# have

unconditional unlabeled exits (break)

• Java and Perl have unconditional labeled exits

(break in Java, last in Perl)

• C, C++, and Python have an unlabeled control

statement, continue, that skips the remainder of

the current iteration, but does not exit the loop

• Java and Perl have labeled versions of continue

38

8.3.4 Iteration Based on Data

Structures
• The number of elements in a data structure

controls loop iteration

• Control mechanism is a call to an iterator function
that returns the next element in some chosen order,
if there is one; else loop is terminate

• C's for can be used to simulate a user-defined
iteration statement

for (p=root; p==NULL; p=traverse(p)){

...

}

39

8.3.4 Iteration Based on Data Structures

• PHP
- current points at one element of the array

- next moves current to the next element

- reset moves current to the first element

• Java 5.0 (uses for, although it is called

foreach)
For arrays and any other class that implements the

Iterable interface, e.g., ArrayList

for (String myElement : myList) { … }

40

8.3.4 Iteration Based on Data

Structures

• C# and F# also have generic library classes

for collections

– Predefined generic collections have built-in

iterators that are used implicitly with the

foreach statement.

41

Unconditional Branching
• Transfers execution control to a specified place in the program

• Represented one of the most heated debates in 1960’s and
1970’s

• Major concern: Readability

• Some languages do not support goto statement (e.g., Java)

• C# offers goto statement (can be used in switch statements)

