
1

Chapter 7 Expressions and
Assignment statements

7.1 Introduction

• Expressions are the fundamental means of
specifying computations in a programming
language
– Semantics of expressions are discussed in this Chapter
– To understand the expression evaluation, it is necessary

to be familiar with the orders of operator and operand
evaluation

– The essence of the imperative programming languages
is the dominant role of assignment statements

2

7.2 Arithmetic Expressions
• Automatic evaluation of arithmetic

expressions similar to those found in
mathematics, science, and engineering was
one of the primary goals of the first high-
level programming language.

• Arithmetic expressions consist of
– Operator, operands, parentheses, and function

calls

3

7.2 Arithmetic Expressions

• Design issues for arithmetic expressions
– Operator precedence rules?
– Operator associativity rules?
– Order of operand evaluation?
– Operand evaluation side effects?
– Operator overloading?
– Type mixing in expressions?

4

7.2.1 Operator Evaluation Order

• The operator precedence rules for expression
evaluation define the order in which “adjacent”
operators of different precedence levels are
evaluated

• Typical precedence levels
– parentheses
– unary operators
– ** (if the language supports it)
– *, /
– +, -

5

7.2.1 Operator Evaluation Order
(Cont’d)

• The operator associativity rules for expression evaluation
define the order in which adjacent operators with the same
precedence level are evaluated

• Typical associativity rules
– Left to right, except **, which is right to left
– Sometimes unary operators associate right to left (e.g., in

FORTRAN)
• APL is different; all operators have equal precedence and

all operators associate right to left
• Precedence and associativity rules can be overridden with

parentheses

6

7.2.1.6 Conditional Expressions

• Conditional Expressions
– C-based languages (e.g., C, C++)
– An example:

average = (count == 0)? 0 : sum / count

– Evaluates as if written as follows:
if (count == 0)

average = 0

else

average = sum /count

7

7.2.2 Operand Evaluation Order

• Variables
– Fetch the value from memory

• Constants:
– Sometimes a fetch from memory; sometimes the

constant is in the machine language instruction
• Parenthesized expressions:

– evaluate all operands and operators first
• The most interesting case is when an operand is a

function call
8

7.2.2.1 Side Effects

• A side effect of a function occurs when the
function changes either one of its
parameters or a global variable

9

7.2.2.1 Side Effects (Cont’d)

• Problem with functional side effects:
– When a function referenced in an expression alters

another operand of the expression; e.g., for a parameter
change:
a = 10;

/* assume that fun changes its parameter */

b = a + fun(&a);

10

• The following program compiled with gcc version 4.5.2
(Ubuntu/Linaro 4.5.2-8ubuntu4). The execution result is
“a=20”.

int a=5;

int fun1() {

a=17;

return 3;

}

void main() {

a=a+fun1();

printf(“a=%d\n”,a);

}
11

7.2.2.1 Side Effects (Cont’d)

• Note that functions in mathematics do not have
side effects, because there is no notion of variables
in mathematics.

12

7.2.2.1 Side Effects (Cont’d)

• Two possible solutions to the problem
1. Write the language definition to disallow functional side effects

• No two-way parameters in functions
• No non-local references in functions
• Advantage: it works!
• Disadvantage: inflexibility of one-way parameters and lack of

non-local references
2. Write the language definition to demand that operand evaluation

order be fixed
• Disadvantage: limits some compiler optimizations
• Java requires that operands appear to be evaluated in left-to-right

order

13

7.2.2.2 Referential Transparency
and Side Effects

• A program has the property of referential
transparency if any two expressions in the
program that have the same value can be
substituted for one another anywhere in the
program, without affecting the action of the
program

result1 = (fun(a) + b) / (fun(a) – c);

temp = fun(a);

result2 = (temp + b) / (temp – c);

If fun has no side effects, result1 = result2
Otherwise, not, and referential transparency is violated

14

7.2.2.2 Referential Transparency
and Side Effects

• Advantage of referential transparency
– Semantics of a program is much easier to understand if

it has referential transparency
• Because they do not have variables, programs in

pure functional languages are referentially
transparent
– Functions cannot have state, which would be stored in

local variables
– If a function uses an outside value, it must be a constant

(there are no variables). So, the value of a function
depends only on its parameters

15

7.3 Overloaded Operators

• Use of an operator for more than one
purpose is called operator overloading
– Some are common (e.g., + for int and float)
– It is generally thought to be acceptable, as long

as neither readability nor reliability suffers

16

7.3 Overloaded Operators
(Cont’d)

• Some are potential trouble
– E.g.

•* in C and C++
•x=&y; c=a&b;

– Loss of compiler error detection (omission of
an operand should be a detectable error)

– Some loss of readability

17

7.3 Overloaded Operators
(Cont’d)

• Some languages that support abstract data types,
for example, C++, C#, and F#, allow the
programmer to further overload operation symbols
– See next slice

• C++ has a few operators that cannot be overloaded.
– Structure member operator (.) and scope resolution

operation (::)
• Interestingly, operator overloading was one of the

C++ features that was not copied in to Java
– However, it did reappear in C#

18

#include <iostream.h>

class Complex

{

public:

Complex(double=0.0,double=0.0);

Complex operator +(Complex);

Complex add(Complex);

void Print();

private:

double Real;

double Imag;

};

//Constructor

Complex::Complex(double r, double i)

{

Real = r;

Imag = i;

}

19

// implementation of addition operator

Complex Complex::operator +(Complex CNum)

{

Complex C;

C.Real = Real + CNum.Real;

C.Imag = Imag + CNum.Imag;

return C;

}

Complex Complex::add(Complex CNum)

{

Complex C;

C.Real = Real + CNum.Real;

C.Imag = Imag + CNum.Imag;

return C;

}

// implementation of print function

//---------------------------------

void Complex::Print()

{

cout << "Complex Number= "<<Real<<"+i"<<Imag<<endl;

}

// simple main program

//--------------------

int main()

{

// Declare objects of complex class

Complex x(22,2), y(11,3),z;

z=x+y;
}

7.4 Type Conversions

• Type conversions are either narrowing or
widening
– A narrowing conversion is one that converts an object

to a type that cannot include all of the values of the
original type

• e.g., float to int

– A widening conversion is one in which an object is
converted to a type that can include at least
approximations to all of the values of the original type

• e.g., int to float

20

7.4 Type Conversions (Cont’d)

• Widening conversions are nearly always
safe, meaning that the magnitude of the
converted value is maintain
– It can result in reduced accuracy

• 32-bit integer allows at least nine decimal digits of
precision

• 32-bit float-point values are with only about seven
decimal digits of precision

21

7.4.1 Coercion in Expressions
• One of the design decisions concerning

arithmetic expressions is whether an
operator can have operands of different
types
– Mixed-mode expression
– Must define conversions for implicit operand

type conversions
• Because computers do not have binary operations

that take operands of different types

22

7.4.1 Coercion in Expressions
(Cont’d)

– Mixed-mode expression
• For overloaded operators in a language that uses

static type binding, the compiler chooses the correct
type of operation on the basis of the types of the
operands

• Language designers are not in agreement on the
issue of coercions in arithmetic expressions.

– Reduce the benefits of type checking

23

7.4.1 Coercion in Expressions (Cont’d)
– int a;

– float b, c, d;

– …

– d=b*a; //a is a keying error

• Because mixed-mode expressions are legal
in Java, the compiler would not detect this
as an error

• F# and ML do not allow

24

7.4.2 Explicit Type Conversion

• Most languages provide some capabiity for
doing explicit conversions,
– Widening and narrowing

• Warning messages may be produced

• Called casting in C-based languages
– Examples

•C: (int)angle
•F#: float(sum)

25

7.4.3 Errors in Expressions

• If the language requires type checking, then
operand type errors cannot occur

• Other kinds of errors:
– Inherent limitations of arithmetic

e.g., division by zero
– Limitations of computer arithmetic

e.g. overflow
• Often ignored by the run-time system

26

7.6 Short-Circuit Evaluation

• A short-circuit evaluation of an expression is
one in which the result is determined without
evaluating all of the operands and/or operators

• Example: (13 * a) * (b / 13 – 1)
– If a is zero, there is no need to evaluate (b/13 - 1)

• However, in arithmetic expressions, this shortcut
is not easily detected, so it is never taken

27

7.6 Short-Circuit Evaluation
(Cont’d)

• Unlike the case of arithmetic expressions,
the shortcut of Boolean expression can be
easily discovered.
– (a>=0) && (b<10)

28

7.6 Short-Circuit Evaluation
(Cont’d)

• Problem with non-short-circuit evaluation
– SCE and non-SCE are with different execution

results
index = 0;
while ((index<=listlen) && (list[index]!= key)
index=index+1;

• A language that provides SCEs of Boolean
expressions and also has side effects in
expressions allows subtle errors to occur
(a>b)||((b++)/3)

29

7.6 Short-Circuit Evaluation
(Cont’d)

• Ada solution: by using two-word operations
to activate SCE (The best solution)
– “and then”, “or else”

• In C-based language, the usual AND and
OR operations, && and ||, respectively, are
short-circuit.

30

7.7 Assignment Statements

• The general syntax
<target_var> <assign_operator> <expression>

• The assignment operator
= Fortran, BASIC, the C-based languages
:= Ada, Pascal

• = can be bad when it is overloaded for the
relational operator for equality (that’s why the C-
based languages use == as the relational operator)

31

7.7.2 Conditional Targets

• Conditional targets (Perl)
($flag ? $total : $subtotal) = 0

Which is equivalent to
if ($flag){

$total = 0

} else {

$subtotal = 0

}

32

7.7.3 Compound Assignment
Operators

• A shorthand method of specifying a commonly
needed form of assignment

• Introduced in ALGOL; adopted by C and the C-
based languaes
– Example

a = a + b

can be written as

a += b

33

7.7.4 Unary Assignment
Operators

• Unary assignment operators in C-based languages
combine increment and decrement operations with
assignment

• Examples
sum = ++count (count incremented, then assigned

to sum)
sum = count++ (count assigned to sum, then

incremented
count++ (count incremented)
-count++ (count incremented then negated)

34

7.7.5 Assignment as an
Expression

• In the C-based languages, Perl, and JavaScript, the
assignment statement produces a result and can be
used as an operand
while ((ch = getchar())!= EOF){…}

ch = getchar() is carried out; the result (assigned
to ch) is used as a conditional value for the while
statement

• Disadvantage: another kind of expression side
effect

35

7.7.6 Multiple Assignments

• Perl, Ruby, and Lua allow multiple-target multiple-source
assignments
($first, $second, $third)=(20, 30, 40);

• Also, the following is legal and performs an interchange:
($first, $second)=($second, $first);

36

7.8 Mixed-Mode Assignment
• Assignment statements can also be mixed-

mode
• In Fortran, C, Perl, and C++, any numeric

type value can be assigned to any numeric
type variable

• In Java and C#, only widening assignment
coercions are done

• In Ada, there is no assignment coercion
37

Summary

• Expressions
• Operator precedence and associativity
• Operator overloading
• Mixed-type expressions
• Various forms of assignment

38

