
1

Chapter 5 Names, Bindings, and

Scopes

This chapter introduces the fundamental semantic

issues of variables. The attributes of variables,

including type, address, and value, are then

discussed.

5.1 Introduction

• What are variables?

– The abstractions in a language for the memory

cells of the machine

• A variable can be characterized by a

collection of properties, or attributes

– Type (the most important)

– Scope

– Lifetime

2

5.2 Names

• Names are also associated with

subprograms, formal parameters, and other

program constructs.

• Identifier Name

3

5.2.1 Design Issues

• Are names case sensitive?

• Are the special words of the language

reserved words or keywords?

4

5.2.2 Name Forms

• A name is a string of characters used to

identify some entity in its names

– Length limitations are different for different

languages

• C99, Java, C#, Ada, C++

– Naming convention

• Underscore characters

• Camel notation

• Other: PHP, Perl, Ruby
5

5.2.2 Name Forms

• Case sensitive

– To some people, this is a serious detriment to

readability

– Not everyone agrees that case sensitivity is bad

for names

6

5.2.3 Special Words

• Special works in programming languages

are used to make programs more readable

by naming actions to be performed.

– They are used to separate the syntactic parts of

statements and programs.

– Keyword and reserved word

7

5.2.3 Special Words

• A keyword is a word of programming

language that is special only in certain

contexts.

• In Fortran,

Integer Apple

Integer = 4

Integer Real

Real Integer

8

5.2.3 Special Words

• A reserved word is a special word of a

programming language that cannot be used

as a name

• In C, Java, and C++

int i; /*a legal statement*/

float int; /*an illegal statement*/

• COBOL has 300 reserved words,
–LENGTH , BOTTOM , DESTINATION , COUNT

9

5.3 Variables

• Definition of variable

– A program variable is an abstraction of a

computer memory cell or collection of cells.

• A variable can be characterized as a

sextuple of attributes:

– (Name, address, type, lifetime, and scope)

10

5.3.1 Name

• Identifier

• Most variables have names

– Variables without names

• Temporary variables

– E.g. x=y*z+3

» The result of y*z may be stored in a temporary

variable

• Variables stored in heap

– Section 5.4.3.3

11

5.3.2 Address

• Definition of address

– The address of a variable is the machine

memory address with which it is associated.

• In many language, it is possible for the

same variable to be associated with

different addresses at different times in the

program

– E.g., local variables in subroutine

12

5.3.2 Address (Cont’d)

• Address l-value

• When more than one variable name can be

used to access the same memory location,

the variables are called aliases.

– A hindrance to readability because it allows a

variable to have its value changes by an

assignment to a different variable

• UNION, pointer, subroutine parameter

13

5.3.3 Type

• The type of a variable determines the same

of values the variable can store and the set

of operations that are defined for values of

the type.

14

5.3.4 Value

• The value of a variable is the contents of the

memory cell or cells associated with the

variable

– Abstract cells > physical cells

• Value r-value

15

5.4 The Concept of Binding

• Definition of binding

– A binding is an association between an attribute

and an entity

• A variable and its type or value

• An operation and symbol

• Binding time

– The time at which a binding takes place

16

5.4 The Concept of Binding

(Cont’d)

• When can binding take place?

– Language design time

– Language implementation time

– Compile time

– Load time

– Link time

– Run time

• Check the example in the first para. of Section 5.4

and make sure you understand it.

17

5.4 The Concept of Binding

(Cont’d)

• Consider the Java statement:

count = count + 5;

– The type of count

– The set of possible values of count

– The meaning of operator “+”

– The internal representation of literal “5”

– The value of count

18

5.4.1 Binding of Attributes

toVariables

• Static binding

– Occurs before run time begins and remains

unchanged throughout program execution

• Dynamic binding

– Occurs during run time or can change in the

course of program execution

19

5.4.2 Type Bindings

• Before a variable can be referenced in a

program, it must be bound to a data type

20

5.4.2.1 Static Type Binding

• Static type binding Variable declaration

– Explicit declaration

• A declaration statement that lists variable names and

the specified type

– Implicit declaration

• Associate variables with types through default

conventions

– Naming conventions of FORTRAN

21

5.4.2.1 Static Type Binding

(Cont’d)

• Although they are a minor convenience to

programmers, implicit declarations can be

detrimental to reliability

– Prevent the compilation process from detecting some

typographical and programmer errors

– Solution:

• FORTRAN: declaration Implicit none

• Specific types to begin with particular special characters

– Perl: $, @, %

• Type inference in C#

22

5.4.2.2 Dynamic Type Binding

• The type of a variable is not specified by a

declaration statement

• The variable is bound to a type when it is

assigned a value in an assignment statement

• Advantage:

– It provides more programming flexibility

• Generic program to deal with data for any numeric

type

23

5.4.2.2 Dynamic Type Binding

(Cont’d)

• Before the mid-1990s, the most commonly

used programming languages used static

type binding

• However, since then there has been a

significant shift languages that use dynamic

type bindign

– Python, Ruby, JavaScript, PHP, …

24

5.4.2.2 Dynamic Type Binding

(Cont’d)

• JavaScript

List = [10.2, 3.5];

…

List = 47;

• C# 2010

–“any” can be assigned a value of any type. It is useful

when data of unknown type come into a program from an

external source

dynamic any;

25

5.4.2.2 Dynamic Type Binding

(Cont’d)

• Disadvantages:

– It causes programs to be less reliable

• Error-detection capability of the compiler is diminished

– Incorrect types of right sides of assignments are not detected as

errors

» E.g., keying error of “i=x;” and “i=y;”.

– Cost

• Type checking must be done at run time

– Run-time descriptor

– Storage of a variable must be of varying size

– Usually implemented using pure interpreters

26

5.4.3 Storage Bindings and

Lifetime

• Process in Memory

27

5.4.3 Storage Bindings and

Lifetime (Cont’d)

• Allocation

– The memory cell to which a variable is bound somehow

must be taken from a pool of available memory

• Deallocation

– Placing a memory cell that has been unbound from a

variable back into the pool of available memory

• Lifetime

– The time during which the variable is bound to a

specific memory location

28

5.4.3.1 Static Variables

• Static variables are those that

are bound to memory cells

before program execution

begins and remain bound to

those same memory cells until

program execution terminates

– Globally accessible variables

– History sensitive

29

5.4.3.1 Static Variables (Cont’d)

• Advantage:

– Efficiency

• Direct addressing

• No run-time overhead for allocation and deallocation

• Disadvantage:

– Cannot support recursive

– Storage cannot be shared among variable

• C and C++

– “static” specifier on a variable definition in a function

30

5.4.3.2 Stack-Dynamic Variables

• Storage bindings are created when their

declaration statements are elaborated, but

whose types are statically bound.

– Elaboration of such a declaration refers to the

storage allocation and binding process indicated

by the declaration, which takes place when

execution reaches the code to which the

declaration is attached.

• Occurs during run time

31

5.4.3.2 Stack-Dynamic Variables
• Stack-dynamic variables are

allocated from the run-time

stack

• Advantages

– Recursive subprograms

support

– Storage sharing

• Disadvantages

– Indirect addressing

– Overhead for allocation and

deallocation 32

5.4.3.3 Explicit Heap-Dynamic

Variables

• Explicit Heap-Dynamic

variables are nameless

memory cells that are

allocated and deallocated by

explicit run-time instructions

– Allocated from and deallocated

to the heap, can only be

referenced through pointer or

reference variables

33

5.4.3.3 Explicit Heap-Dynamic

Variables (Cont’d)
• C++

int *intnode;

intnode = new int;

…

delete intnode;

• C

int *ptr = malloc(sizeof(int));

*ptr = 200;

…

free(ptr);

int *arr = malloc(1000 * sizeof(int));

…

free(ptr);

34

5.4.3.3 Explicit Heap-Dynamic

Variables (Cont’d)

• Java

– Java objects are explicit heap dynamic and are

accessed through reference variables

• Usage:

– Explicit heap-dynamic variables are often used

to construct dynamic structures,

• Linked lists and trees, that need to grow and/or

shrink during execution

35

5.4.3.3 Explicit Heap-Dynamic

Variables (Cont’d)

• Disadvantage

– Difficulty of using pointer and reference

variable correctly

– Cost of references to the variables

– Complexity of the required storage

management implementation

36

5.4.3.4 Implicit Heap-Dynamic

Variables

• Variables bound to heap storage only when

they are assigned values

• All attributes are bound every time they are

assigned

• E.g., JavaScript

highs=[74, 84, 86, 90, 71];

37

5.4.3.4 Implicit Heap-Dynamic

Variables (Cont’d)

• Advantages:

– High degree of flexibility

– Allowing highly generic code to be written

• Disadvantages:

– Run-time overhead of maintaining all the

dynamic attributes

• Array subscript types and ranges

• Loss of some error detection by the compiler

38

5.5 Scope

• The scope of a variable is the range of

statements in which the variable is visible.

– A variable is visible in a statement if it can be

referenced in that statement.

• Local & non local variables

39

5.5.1 Static Scope

• ALGOL 60 introduced the method of

binding names to nonlocal variables call

static scoping

– The scope of a variable can be statically

determined

• Prior to execution

40

5.5.1 Static Scope (Cont’d)

• Two categories of static scoped languages

– Subroutine can be nested

• Nested static scopes

• E.g., Ada, JavaScript, Common LISP, Scheme,

Fortran 2003+, F#, and Python

– Subroutine cannot be nested

• E.g. , C-based language

41

5.5.1 Static Scope (Cont’d)

• How to find a reference to a variable in static-

scoped language?

– Suppose a reference is made to a variable x in

subprogram sub1.

– The correct declaration is found by first searching the

declarations of subprogram sub1.

– If no declaration is found for the variable there, the

search continues in the declarations of the subprogram

that declared subprogram sub1, which is call its static

parent.

42

5.5.1 Static Scope (Cont’d)

• A JavaScript function
function big() {

function sub1(){

var x=7;

sub2(); }

function sub2() {

var y=x; }

var x=3;

sub1();

}

43

big()

var x;

sub1()

var x;

sub2()

var y;

5.5.1 Static Scope (Cont’d)

• Static ancestor

• Hidden

– The outer x is hidden from sub1.

• Hidden variables can be accessed in some

languages

– E.g., Ada

big.x

44

5.5.2 Blocks

• Many languages allow new static scopes to

be defined in the midst of executable code

– Originated from ALGOL 60

– Allows a section of code to have its own local

variables whose scope is minimized

• Defined variables are typically static dynamic

– Called a block

• Origin of the phrase block-structured language

45

5.5.2 Blocks (Cont’d)

• Many languages allow new static scopes to

be defined in the midst of executable code

– Originated from ALGOL 60

– Allows a section of code to have its own local

variables whose scope is minimized

• Defined variables are typically static dynamic

– Called a block

• Origin of the phrase block-structured language

46

5.5.2 Blocks (Cont’d)

• The scopes created by blocks, which could nested in larger

blocks, are treated exactly like those created by

subprograms

– legal in C and C++, but not in Java and C# - too error-prone

void sub() {

int count;

while (...) {

int count;

count++;

...

}

…

}

47

5.5.3 Declaration order

• In C89, all data declarations in a function

except those in nested blocks must appear at

the beginning of the function

• However, C99, C++, Java, JavaScript, C##,

allow variable declarations to appear

anywhere

– Scoping rules are different

48

5.5.4 Global Scope

• In C, C++, PHP, JavaScript, and Python,

variable definitions can appear outside all

the functions

– Create global variables, which potentially can

be visible to those functions

49

5.5.4 Global Scope (Cont’d)

• C, C++ have both declarations and

definitions of global data.

– Declarations specify types and other attributes

but do not cause allocation of storage.

– Definitions specify attributes and cause storage

allocation

– For a specific global name, a C program can

have any number of compatible declaration, but

only a single definition
50

5.5.4 Global Scope (Cont’d)

• A declaration of variable outside function

definitions specifies that the variable is

defined in a different file.
extern int sum;

51

5.5.4 Global Scope (Cont’d)

• The idea of declaration and definition

carries over to the functions of C and C++.

main(){

int foo(int);

…

}

int foo(int x;)

{

…

}

52

A prototype,

declaration

A function

definition

5.5.4 Global Scope (Cont’d)

• Check the global scope rule of

– C++

– PHP

– JavaScript

– Python

53

5.5.5 Evaluation of Static Scope

• Problems of static

scoping

– In most cases it allows

more access to both

variables and

subprograms than is

necessary

– Software is highly

dynamic – programs

that are used regularly

continually change.

• E.g., E() wants to

access x in D()

54

main()

A()

var x;

B()

C() D()

var x;

E()

main()

var x;

A()

var x;

B()

C() D()

var x;

E()

5.5.6 Dynamic Scope

• Dynamic scoping is based on the calling

sequence of subprogram, not on their spatial

relationship to each other.

– The scope can be determined only at run time.

55

5.5.6 Dynamic Scope (Cont’d)
• Consider the following two calling sequences:

– big calls sub1, sub1 calls sub2

– big calls sub2

function big() {

function sub1(){

var x=7;

sub2(); }

function sub2() {

var y=x;

var z=3; }

var x=3;

sub1();

sub2();

}
56

5.5.7 Evaluation of Dynamic

Scoping

• Problems follow directly from dynamic

scoping:

– No way to protect local variables from this

accessibility

– In ability to type check references to nonlocals

directly

– Make programs much more difficult to read

– Slow in referencing nonlocal variables

57

5.5.7 Evaluation of Dynamic

Scoping (Cont’d)

• Merit:

– The parameters passed from one subprogram to

another are variables that are defined in the

caller.

– None of these needs to be passed

• Dynamic scoping is not widely used

– LISP replaced dynamic scope with static scope

58

5.6 Scope and Lifetime (Cont’d)

• The apparent relationship between scope

and lifetime does not hold in other situation

– Second para.

– E.g., The lifetime of sum extends over the time

during which printheader executes.
void printheader() {

… }

void compute() {

int sum;

…

printheader(); }
59

5.7 Referencing Environments

• The referencing environment of a statement

is the collection of all variables that are

visible in the statement

– In a static scoped language is the variables

declared in its local scope plus the collection of

all variables of its ancestor scopes

–

60

5.7 Referencing Environments

(Cont’d)

• For dynamic scoped language:

– A subprogram is active if its execution has

begun but has not yet terminated

– The reference environment in a dynamically

scoped language is the locally declared

variables, plus the variables of all other

subprograms that are currently active.

61

5.8 Named Constants
• A name constant is variable that is bound to a

value only once.

– Useful as aids to readability and program reliability

• E.g.

– In Java,

• final int len=100;

– C++ allow dynamic binding of values to named

constants, in C++:

• const int result = 2* width +1 ;

62

