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Chapter 5 Names, Bindings, and 

Scopes

This chapter introduces the fundamental semantic 

issues of variables. The attributes of variables, 

including type, address, and value, are then 

discussed.



5.1 Introduction

• What are variables?

– The abstractions in a language for the memory 

cells of the machine

• A variable can be characterized by a 

collection of properties, or attributes

– Type (the most important)

– Scope

– Lifetime
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5.2 Names

• Names are also associated with 

subprograms, formal parameters, and other 

program constructs.

• Identifier  Name
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5.2.1 Design Issues

• Are names case sensitive?

• Are the special words of the language 

reserved words or keywords?
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5.2.2 Name Forms

• A name is a string of characters used to 

identify some entity in its names

– Length limitations are different for different 

languages

• C99, Java, C#, Ada, C++

– Naming convention

• Underscore characters

• Camel notation

• Other: PHP, Perl, Ruby
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5.2.2 Name Forms

• Case sensitive

– To some people, this is a serious detriment to 

readability 

– Not everyone agrees that case sensitivity is bad 

for names
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5.2.3 Special Words

• Special works in programming languages 

are used to make programs more readable 

by naming actions to  be performed.

– They are used to separate the syntactic parts of 

statements and programs.

– Keyword and reserved word
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5.2.3 Special Words

• A keyword is a word of programming 

language that is special only in certain 

contexts.

• In Fortran, 

Integer Apple

Integer = 4

Integer Real

Real Integer
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5.2.3 Special Words

• A reserved word is a special word of a 

programming language that cannot be used 

as a name

• In C, Java, and C++

int i; /*a legal statement*/

float int; /*an illegal statement*/

• COBOL has 300 reserved words,
–LENGTH , BOTTOM , DESTINATION , COUNT
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5.3 Variables

• Definition of variable

– A program variable is an abstraction of a 

computer memory cell or collection of cells.

• A variable can be characterized as a 

sextuple of attributes:

– (Name, address, type, lifetime, and scope)
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5.3.1 Name

• Identifier

• Most variables have names

– Variables without names

• Temporary variables

– E.g. x=y*z+3

» The result of y*z may be stored in a temporary 

variable

• Variables stored in heap

– Section 5.4.3.3
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5.3.2 Address

• Definition of address

– The address of a variable is the machine 

memory address with which it is associated.

• In many language, it is possible for the 

same variable to be associated with 

different addresses at different times in the 

program

– E.g., local variables in subroutine
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5.3.2 Address (Cont’d)

• Address  l-value

• When more than one variable name can be 

used to access the same memory location, 

the variables are called aliases.

– A hindrance to readability because it allows a 

variable to have its value changes by an 

assignment to a different variable

• UNION, pointer, subroutine parameter
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5.3.3 Type

• The type of a variable determines the same 

of values the variable can store and the set 

of operations that are defined for values of 

the type.
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5.3.4 Value

• The value of a variable is the contents of the 

memory cell or cells associated with the 

variable

– Abstract cells > physical cells

• Value  r-value
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5.4 The Concept of Binding

• Definition of binding

– A binding is an association between an attribute 

and an entity

• A variable and its type or value

• An operation and symbol

• Binding time

– The time at which a binding takes place
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5.4 The Concept of Binding 

(Cont’d)

• When can binding take place?

– Language design time

– Language implementation time

– Compile time

– Load time

– Link time

– Run time

• Check the example in the first para. of Section 5.4 

and make sure you understand it.
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5.4 The Concept of Binding 

(Cont’d)

• Consider the Java statement:

count = count + 5;

– The type of count

– The set of possible values of count

– The meaning of operator “+”

– The internal representation of literal “5”

– The value of count
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5.4.1 Binding of Attributes 

toVariables 

• Static binding

– Occurs before run time begins and remains 

unchanged throughout program execution

• Dynamic binding

– Occurs during run time or can change in the 

course of program execution
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5.4.2 Type Bindings

• Before a variable can be referenced in a 

program, it must be bound to a data type
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5.4.2.1 Static Type Binding

• Static type binding  Variable declaration

– Explicit declaration

• A declaration statement that lists variable names and 

the specified type

– Implicit declaration

• Associate variables with types through default 

conventions

– Naming conventions of FORTRAN
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5.4.2.1 Static Type Binding 

(Cont’d)

• Although they are a minor convenience to 

programmers, implicit declarations can be 

detrimental to reliability

– Prevent the compilation process from detecting some 

typographical and programmer errors

– Solution:

• FORTRAN: declaration Implicit none

• Specific types to begin with particular special characters

– Perl: $, @, %

• Type inference in C#
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5.4.2.2 Dynamic Type Binding

• The type of a variable is not specified by a 

declaration statement

• The variable is bound to a type when it is 

assigned a value in an assignment statement

• Advantage:

– It provides more programming flexibility

• Generic program to deal with data for any numeric 

type
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5.4.2.2 Dynamic Type Binding 

(Cont’d)

• Before the mid-1990s, the most commonly 

used programming languages used static 

type binding

• However, since then there has been a 

significant shift languages that use dynamic 

type bindign

– Python, Ruby, JavaScript, PHP, …
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5.4.2.2 Dynamic Type Binding 

(Cont’d)

• JavaScript

List = [10.2, 3.5];

…

List = 47;

• C# 2010

–“any” can be assigned a value of any type. It is useful 

when data of unknown type come into a program from an 

external source

dynamic any;
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5.4.2.2 Dynamic Type Binding 

(Cont’d)

• Disadvantages:

– It causes programs to be less reliable

• Error-detection capability of the compiler is diminished

– Incorrect types of right sides of assignments are not detected as 

errors

» E.g., keying error of “i=x;” and “i=y;”.

– Cost

• Type checking must be done at run time

– Run-time descriptor

– Storage of a variable must be of varying size

– Usually implemented using pure interpreters 
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5.4.3 Storage Bindings and 

Lifetime

• Process in Memory
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5.4.3 Storage Bindings and 

Lifetime (Cont’d)

• Allocation

– The memory cell to which a variable is bound somehow 

must be taken from a pool of available memory

• Deallocation

– Placing a memory cell that has been unbound from a 

variable back into the pool of available memory

• Lifetime

– The time during which the variable is bound to a 

specific memory location
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5.4.3.1 Static Variables

• Static variables are those that

are bound to memory cells

before program execution

begins and remain bound to

those same memory cells until

program execution terminates

– Globally accessible variables

– History sensitive 
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5.4.3.1 Static Variables (Cont’d)

• Advantage:

– Efficiency

• Direct addressing

• No run-time overhead for allocation and deallocation 

• Disadvantage:

– Cannot support recursive

– Storage cannot be shared among variable

• C and C++

– “static” specifier on a variable definition in a function
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5.4.3.2 Stack-Dynamic Variables

• Storage bindings are created when their 

declaration statements are elaborated, but 

whose types are statically bound.

– Elaboration of such a declaration refers to the 

storage allocation and binding process indicated 

by the declaration, which takes place when 

execution reaches the code to which the 

declaration is attached.

• Occurs during run time
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5.4.3.2 Stack-Dynamic Variables
• Stack-dynamic variables are 

allocated from the run-time 

stack

• Advantages

– Recursive subprograms 

support

– Storage sharing

• Disadvantages

– Indirect addressing

– Overhead for allocation and 

deallocation 32



5.4.3.3 Explicit Heap-Dynamic 

Variables

• Explicit Heap-Dynamic 

variables are nameless 

memory cells that are 

allocated and deallocated by 

explicit run-time instructions

– Allocated from and deallocated 

to the heap, can only be 

referenced through pointer or 

reference variables
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5.4.3.3 Explicit Heap-Dynamic 

Variables (Cont’d)
• C++

int *intnode;

intnode = new int;

…

delete intnode;

• C

int *ptr = malloc(sizeof(int));

*ptr = 200; 

…

free(ptr);

int *arr = malloc(1000 * sizeof(int));

…

free(ptr);
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5.4.3.3 Explicit Heap-Dynamic 

Variables (Cont’d)

• Java

– Java objects are explicit heap dynamic and are 

accessed through reference variables

• Usage:

– Explicit heap-dynamic variables are often used 

to construct dynamic structures,

• Linked lists and trees, that need to grow and/or 

shrink during execution
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5.4.3.3 Explicit Heap-Dynamic 

Variables (Cont’d)

• Disadvantage

– Difficulty of using pointer and reference 

variable correctly

– Cost of references to the variables

– Complexity of the required storage 

management implementation
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5.4.3.4 Implicit Heap-Dynamic 

Variables

• Variables bound to heap storage only when 

they are assigned values

• All attributes are bound every time they are 

assigned

• E.g., JavaScript

highs=[74, 84, 86, 90, 71];
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5.4.3.4 Implicit Heap-Dynamic 

Variables (Cont’d)

• Advantages:

– High degree of flexibility

– Allowing highly generic code to be written

• Disadvantages:

– Run-time overhead of maintaining all the 

dynamic attributes

• Array subscript types and ranges

• Loss of some error detection by the compiler
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5.5 Scope

• The scope of a variable is the range of 

statements in which the variable is visible.

– A variable is visible in a statement if it can be 

referenced in that statement.

• Local & non local variables
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5.5.1 Static Scope

• ALGOL 60 introduced the method of 

binding names to nonlocal variables call 

static scoping

– The scope of a variable can be statically 

determined

• Prior to execution
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5.5.1 Static Scope (Cont’d)

• Two categories of static scoped languages

– Subroutine can be nested

• Nested static scopes

• E.g., Ada, JavaScript, Common LISP, Scheme, 

Fortran 2003+, F#, and Python

– Subroutine cannot be nested

• E.g. , C-based language
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5.5.1 Static Scope (Cont’d)

• How to find a reference to a variable in static-

scoped language?

– Suppose a reference is made to a variable x in 

subprogram sub1. 

– The correct declaration is found by first searching the 

declarations of subprogram sub1.

– If no declaration is found for the variable there, the 

search continues in the declarations of the subprogram 

that declared subprogram sub1, which is call its static 

parent.
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5.5.1 Static Scope (Cont’d)

• A JavaScript function
function big() {

function sub1(){

var x=7;

sub2(); }

function sub2() {

var y=x; }

var x=3;

sub1();

}
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big()

var x;

sub1()

var x;

sub2()

var y;



5.5.1 Static Scope (Cont’d)

• Static ancestor

• Hidden

– The outer x is hidden from sub1.

• Hidden variables can be accessed in some 

languages

– E.g., Ada

big.x
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5.5.2 Blocks

• Many languages allow new static scopes to 

be defined in the midst of executable code

– Originated from ALGOL 60

– Allows a section of code to have its own local 

variables whose scope is minimized

• Defined variables are typically static dynamic

– Called a block

• Origin of the phrase block-structured language
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5.5.2 Blocks (Cont’d)

• Many languages allow new static scopes to 

be defined in the midst of executable code

– Originated from ALGOL 60

– Allows a section of code to have its own local 

variables whose scope is minimized

• Defined variables are typically static dynamic

– Called a block

• Origin of the phrase block-structured language
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5.5.2 Blocks (Cont’d)

• The scopes created by blocks, which could nested in larger 

blocks, are treated exactly like those created by 

subprograms

– legal in C and C++, but not in Java and C# - too error-prone

void sub() {

int count;

while (...) {

int count;

count++;

...

}

…

}
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5.5.3 Declaration order

• In C89, all data declarations in a function 

except those in nested blocks must appear at 

the beginning of the function

• However,  C99, C++, Java, JavaScript, C##, 

allow variable declarations to appear 

anywhere

– Scoping rules are different
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5.5.4 Global Scope

• In C, C++, PHP, JavaScript, and Python, 

variable definitions can appear outside all 

the functions

– Create global variables, which potentially can 

be visible to those functions
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5.5.4 Global Scope (Cont’d)

• C, C++ have both declarations and 

definitions of global data. 

– Declarations specify types and other attributes 

but do not cause allocation of storage.

– Definitions specify attributes and cause storage 

allocation 

– For a specific global name, a C program can 

have any number of compatible declaration, but 

only a single definition
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5.5.4 Global Scope (Cont’d)

• A declaration of variable outside function 

definitions specifies that the variable is 

defined in a different file.
extern int sum;
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5.5.4 Global Scope (Cont’d)

• The idea of declaration and definition 

carries over to the functions of C and C++.

main(){ 

int foo(int);

… 

}

int foo(int x;)

{

…

}
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A prototype, 

declaration

A function 

definition



5.5.4 Global Scope (Cont’d)

• Check the global scope rule of 

– C++

– PHP

– JavaScript

– Python
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5.5.5 Evaluation of Static Scope

• Problems of static 

scoping

– In most cases it allows 

more access to both 

variables and 

subprograms than is 

necessary

– Software is highly 

dynamic – programs 

that are used regularly 

continually change.

• E.g., E() wants to 

access x in D()
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main()

A()

var x;

B()

C() D()

var x;

E()

main()

var x;

A()

var x;

B()

C() D()

var x;

E()



5.5.6 Dynamic Scope

• Dynamic scoping is based on the calling 

sequence of subprogram, not on their spatial 

relationship to each other.

– The scope can be determined only at run time.
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5.5.6 Dynamic Scope (Cont’d)
• Consider the following two calling sequences:

– big calls sub1, sub1 calls sub2

– big calls sub2

function big() {

function sub1(){

var x=7;

sub2(); }

function sub2() {

var y=x;

var z=3; }

var x=3;

sub1();

sub2();

}
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5.5.7 Evaluation of Dynamic 

Scoping

• Problems follow directly from dynamic 

scoping:

– No way to protect local variables from this 

accessibility

– In ability to type check references to nonlocals 

directly

– Make programs much more difficult to read

– Slow in referencing nonlocal variables 
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5.5.7 Evaluation of Dynamic 

Scoping (Cont’d)

• Merit:

– The parameters passed from one subprogram to 

another are variables that are defined in the 

caller. 

– None of these needs to be passed

• Dynamic scoping is not widely used

– LISP replaced dynamic scope with static scope
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5.6 Scope and Lifetime (Cont’d)

• The apparent relationship between scope 

and lifetime does not hold in other situation

– Second para.

– E.g., The lifetime of sum extends over the time 

during which printheader executes.
void printheader() {

… }

void compute() {

int sum;

…

printheader(); }
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5.7 Referencing Environments

• The referencing environment of a statement 

is the collection of all variables that are 

visible in the statement

– In a static scoped language is the variables 

declared in its local scope plus the collection of 

all variables of its ancestor scopes 

–
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5.7 Referencing Environments 

(Cont’d)

• For dynamic scoped language:

– A subprogram is active if its execution has 

begun but has not yet terminated

– The reference environment in a dynamically 

scoped language is the locally declared 

variables, plus the variables of all other 

subprograms that are currently active.
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5.8 Named Constants
• A name constant is variable that is bound to a 

value only once. 

– Useful as aids to readability and program reliability

• E.g.

– In Java, 

• final int len=100;

– C++ allow dynamic binding of values to named 

constants, in C++:

• const int result =  2* width +1 ;
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