
1



2

Chapter 1 Preliminary



1.1 Reasons for Studying Concepts of 
Programming Languages

• Increased capacity to express ideas
• Improved background for choosing appropriate 

languages
• Increased ability to learn new languages
• Better understanding of the significance of 

implementation
• Better use of languages that are already known
• Overall advancement of computing

3



1.2 Programming Domains

• Scientific Applications
– Fortran?

• Business Applications
– COBOL (appeared in 1960)

4



1.2 Programming Domains

• Artificial Intelligence
– Symbolic but not numeric
– Linked list but not array
– Functional language : LISP
– Logic programming language: Prolog

5



1.2 Programming Domains

• Web Software
– Markup languages 

• HTML, XML…
– Scripting langages

• Embedded in HTML
• JavaScript or PHP

6



1.3 Language Evaluation Criteria

• Impact on the software development 
process

• Maintenance

7



Readability
• Because considering maintenance

– After 1970
• Overall Simplicity (1.3.1.1)

– Readability problems occur
• Authors had learned a different subsets
• Feature multiplicity
• Operator overloading

– Simplicity in languages can be carried too far
• Result in less readable

– Assembly language

8



Readability

• Orthogonality
– Orthogonal

• 直角的、正交的
• Easier use (in mathematics)
• Non-overlapping, uncorrelated, independent object

– Definition of orthogonality in PL
• First para. of Section 1.3.1.2

9



Readability

• Data Types
– The presence of adequate facilities for defining 

data types and data structures in a language is 
another significant aid to readability

10



Readability

• Syntax Design
– Special words
– Form and meaning

• Syntax and semantics

11



Writability

• Simplicity and Orthogonality
• Expressivity 

12



Reliability

• Type checking
• Exception handling

– Intercept run-time error
• Aliasing

– A dangerous feature
– E.g., Union & pointer in C

• See next slice.

• Readability and Writability
13



Union of C
!"#$%$&'(!)*+!','-
./!'.0
*/.1/'-
&21,!'30
./!'"0'4

4')50
)56378650
#)./!&9:;%<=>6"?0

14



Cost

• Cost of training programmers 
• Cost of writing programs
• Cost of executing programs
• Cost of poor reliability

15



Cost (Cont’d)

• Cost of maintaining programs
– Maintenance costs can be as high as two to four 

times as much as development costs 
(Sommerville, 2005)

• Portability
• Generality and well-definedness

16



1.4 Influences on Language 
Design

• Computer architecture
– A profound effect on language design
– Von Meumann architecture

• Imperative languages
• Central features

– Variables 
– Assignment statements
– Iterative form

17



18

Figure 1-1 The von Neumann computer architecture



1.4 Influences on Language 
Design

• Computer architecture
– Languages that are not imperative

• Functional language
– Without assignment statements and without iteration

– Imperative languages dominate!

19



1.4 Influences on Language 
Design

• Programming design methodologies
– Trend

• HW cost ¯
• SW cost 

20



1.4 Influences on Language Design
• Programming design methodologies

– 1950s and early 1960s: Simple applications; worry 
about machine efficiency

– Late 1960s: People efficiency became important; 
readability, better control structures

• structured programming
• top-down design and step-wise refinement

– Late 1970s: Process-oriented to data-oriented
• data abstraction

– Middle 1980s: Object-oriented programming
• Data abstraction + inheritance + polymorphism

21



1.5 Language Categories

• Four bins:
– Imperative, functional, logic, and object-

oriented.
• Others:

– Scripting language
• By interpretation
• E.g., Perl, JavaScript, Ruby (still imperative)

22



1.5 Language Categories

23

• Imperative
– Central features are variables, assignment statements, and iteration
– Include languages that support object-oriented programming
– Include scripting languages
– Include the visual languages
– Examples: C, Java, Perl, JavaScript, Visual BASIC .NET, C++

• Functional
– Main means of making computations is by applying functions to given 

parameters
– Examples: LISP, Scheme, ML, F#

• Logic
– Rule-based (rules are specified in no particular order)
– Example: Prolog

• Markup/programming hybrid 
– Markup languages extended to support some programming
– Examples: JSTL, XSLT



1.5 Language Categories

• Recently days
– Markup language

• HTML, XML, XSLT, etc.

24



1.6 Language Design Trade-Offs

• What is the meaning of trade-off?
• Trade-offs

– Reliability and cost of execution
– Design trade-off

• How about APL? (See next slice)
– Writability and reliability

25



26



1.7 Implementation Methods

• Compilations
• Pure Interpretation

27


