
Unix System Calls
Gwan-Hwan HwangGwan Hwan Hwang

Dept. CSIE
National Taiwan Normal UniversityNational Taiwan Normal University

2006.12.25

UNIX System Overview

UNIX Architecture
Login NameLogin Name
Shells
Files and Directories

File Systemy
Filename
PathnamePathname
Working Directory, Home Directory

Advanced UNIX Programming, the second
edition, by Marc J. Rochkindedition, by Marc J. Rochkind
Unix System Calls

htt // di t/ l / ll ht lhttp://www.di.uevora.pt/~lmr/syscalls.html

System call error

When a system call discovers and error, it
returns -1 and stores the reason the calledreturns 1 and stores the reason the called
failed in an external variable named "errno".
The "/usr/include/errno h" file maps theseThe /usr/include/errno.h file maps these
error numbers to manifest constants, and it
th t t th t h ld ithese constants that you should use in your
programs.

System call error (Cont’d)

When a system call returns successfully, it
returns something other than -1, but it doesreturns something other than 1, but it does
not clear "errno". "errno" only has meaning
directly after a system call that returns andirectly after a system call that returns an
error.

File structure related system
calls

creat()
open()
close()

d()read()
write()
lseek()
dup()dup()
link()
unlink()
stat()()
fstat()
access()
chmod()
h ()chown()

umask()
ioctl()

File Structure Related System Calls

The file structure related system calls
available in the UNIX system let you create,available in the UNIX system let you create,
open, and close files, read and write files,
randomly access files alias and remove filesrandomly access files, alias and remove files,
get information about files, check the
accessibility of files change protectionsaccessibility of files, change protections,
owner, and group of files, and control devices.

File Structure Related System Calls y
(Cont’d)

To a process then, all input and output
operations are synchronous and unbuffered.operations are synchronous and unbuffered.
All input and output operations start by
opening a file using either the "creat()" oropening a file using either the creat() or
"open()" system calls.

These calls return a file descriptor that identifies
the I/O channel.

File descriptors
Each UNIX process has 20 file descriptors at it
disposal, numbered 0 through 19.
The first three are already opened when the process
begins

0: The standard input
1: The standard output
2: The standard error output

When the parent process forks a process, the child
process inherits the file descriptors of the parent.

creat() system call

The prototype for the creat() system call is:
int creat(file name mode)int creat(file_name, mode)
char *file_name;
int mode;

creat() system call (Cont’d)

The mode is usually specified as an octal
number such as 0666 that would meannumber such as 0666 that would mean
read/write permission for owner, group, and
others or the mode may also be enteredothers or the mode may also be entered
using manifest constants defined in the
"/usr/include/sys/stat h" file/usr/include/sys/stat.h file.

creat() system call (Cont’d)
The following is a sample of the manifest constants for the mode
argument as defined in /usr/include/sys/stat.h:

#define S_IRWXU 0000700 /* -rwx------ */
#define S_IREAD 0000400 /* read permission, owner */
#define S_IRUSR S_IREAD
#define S_IWRITE 0000200 /* write permission, owner */
#define S_IWUSR S_IWRITE
#define S_IEXEC 0000100 /* execute/search permission, owner */
#define S_IXUSR S_IEXEC
#define S_IRWXG 0000070 /* ----rwx--- */
#define S IRGRP 0000040 /* read permission group */#define S_IRGRP 0000040 / read permission, group /
#define S_IWGRP 0000020 /* write " " */
#define S_IXGRP 0000010 /* execute/search " " */
#define S_IRWXO 0000007 /* -------rwx */
#define S IROTH 0000004 /* read permission, other */_ p ,
#define S_IWOTH 0000002 /* write " " */
#define S_IXOTH 0000001 /* execute/search " " */

open() system call

The prototype for the open() system call is:

#include <fcntl.h>
int open(file_name, option_flags [, mode])
char *file name;char file_name;
int option_flags, mode;

open() system call (Cont’d)
The allowable option_flags as defined in
"/usr/include/fcntl.h" are:
#define O_RDONLY 0 /* Open the file for reading only */
#define O_WRONLY 1 /* Open the file for writing only */
#define O_RDWR 2 /* Open the file for both reading and writing*/
#define O_NDELAY 04 /* Non-blocking I/O */
#define O APPEND 010 /* append (writes guaranteed at the end) */#define O_APPEND 010 / append (writes guaranteed at the end) /
#define O_CREAT 00400 /*open with file create (uses third open arg) */
#define O_TRUNC 01000 /* open with truncation */
#d fi O EXCL 02000 /* l i */#define O_EXCL 02000 /* exclusive open */

Multiple values are combined using the | operator (i.e.
bitwise OR)bitwise OR).

close() system call

To close a channel, use the close() system
call. The prototype for the close() system callcall. The prototype for the close() system call
is:

int close(file_descriptor)
int file_descriptor;

read() & write() system calls
The read() system call does all input and the write()
system call does all output.

int read(file_descriptor, buffer_pointer, transfer_size)
int file_descriptor;
char *buffer_pointer;
unsigned transfer_size;

int write(file_descriptor, buffer_pointer, transfer_size)
int file_descriptor;_ p
char *buffer_pointer;
unsigned transfer_size;

lseek() system call

The UNIX system file system treats an
ordinary file as a sequence of bytes.ordinary file as a sequence of bytes.
Generally, a file is read or written sequentially

that is from beginning to the end of the file-- that is, from beginning to the end of the file.
Sometimes sequential reading and writing is

t i tnot appropriate.
Random access I/O is achieved by changing
the value of this file pointer using the lseek()
system call.y

lseek() system call (Cont’d)
long lseek(file_descriptor, offset, whence)
int file descriptor;int file_descriptor;
long offset;
int whence;int whence;

whence new position

0 ff t b t i t th fil0 offset bytes into the file
1 current position in the file plus offset
2 current end-of-file position plus offsetp p

dup() system call
The dup() system call duplicates an open file
descriptor and returns the new file descriptor.p p
The new file descriptor has the following
properties in common with the original file p p g
descriptor:

refers to the same open file or pipe.p p p
has the same file pointer -- that is, both file
descriptors share one file pointer.
has the same access mode, whether read, write,
or read and write.

dup() system call (Cont’d)

dup() is guaranteed to return a file descriptor
with the lowest integer value available. It iswith the lowest integer value available. It is
because of this feature of returning the lowest
unused file descriptor available thatunused file descriptor available that
processes accomplish I/O redirection.

int dup(file_descriptor)
int file_descriptor;

link() system call
The UNIX system file structure allows more
than one named reference to a given file, a g
feature called "aliasing".
Making an alias to a file means that the file g
has more than one name, but all names of
the file refer to the same data.

int link(original name alias name)int link(original_name, alias_name)
char *original_name, *alias_name;

unlink() system call

The opposite of the link() system call is the
unlink() system call.unlink() system call.
The prototype for unlink() is:

int unlink(file_name)(_)
char *file_name;

Process Related System Calls
The UNIX system provides several system calls to

create and end program,
to send and receive software interrupts,
to allocate memory, and to do other useful jobs for a
process.

Four system calls are provided for creating a
di d iti fprocess, ending a process, and waiting for a

process to complete.
Th t ll f k() th " " f il it()These system calls are fork(), the "exec" family, wait(),
and exit().

exec() system calls
The UNIX system calls that transform a executable binary file into a process are the "exec"
family of system calls. The prototypes for these calls are:

int execl(file_name, arg0 [, arg1, ..., argn], NULL)
h *fil * 0 * 1 *char *file_name, *arg0, *arg1, ..., *argn;

int execv(file_name, argv)
char *file_name, *argv[];

int execle(file_name, arg0 [, arg1, ..., argn], NULL, envp)
char *file_name, *arg0, *arg1, ..., *argn, *envp[];

int execve(file name, argv, envp)(_ , g , p)
char *file_name, *argv[], *envp[];

int execlp(file_name, arg0 [, arg1, ..., argn], NULL)
char *file_name, *arg0, *arg1, ..., *argn;

int execvp(file_name, argv)
char *file_name, *argv[];

exec() system calls (Cont’d)

Unlike the other system calls and subroutines,
a successful exec system call does not return.a successful exec system call does not return.
Instead, control is given to the executable
binary file named as the first argumentbinary file named as the first argument.
When that file is made into a process, that

l th th t t dprocess replaces the process that executed
the exec system call -- a new process is not
created.

exec() system calls (Cont’d)

Letters added to the end of exec indicate the
type of arguments:type of arguments:

l argn is specified as a list of arguments.
v argv is specified as a vector (array of characterv argv is specified as a vector (array of character
pointers).
e environment is specified as an array ofe environment is specified as an array of
character pointers.
p user's PATH is searched for command andp user's PATH is searched for command, and
command can be a shell program

fork() system call
To create a new process, you must use the
fork() system call. () y

The prototype for
the fork() system call is:the fork() system call is:
int fork()
fork() causes the UNIX system to create afork() causes the UNIX system to create a
new process, called the "child process", with
a new process ID. The contents of the childa new process ID. The contents of the child
process are identical to the contents of the
parent process.p p

fork() system call (Cont’d)
The new process inherits several characteristics of
the old process. Among the characteristics
i h it dinherited are:

The environment.
All signal settingsAll signal settings.
The set user ID and set group ID status.
The time left until an alarm clock signal.g
The current working directory and the root directory.
The file creation mask as established with umask().

fork() returns zero in the child process and non-zero
(the child's process ID) in the parent process.

wait() system call
You can control the execution of child processes by
calling wait() in the parent.
wait() forces the parent to suspend execution until
the child is finished.
wait() returns the process ID of a child process that
finished.
If the child finishes before the parent gets around to
calling wait(), then when wait() is called by the g (), () y
parent, it will return immediately with the child's
process ID.

wait() system call (Cont’d)

The prototype for the wait() system call is:
int wait(status)int wait(status)
int *status;

“status” is a pointer to an integer where the
UNIX system stores the value returned by the
child process. wait() returns the process ID
of the process that ended.p

exit() system call
The exit() system call ends a process and returns a value to it
parent.
The prototype for the exit() system call is:The prototype for the exit() system call is:
void exit(status)
int status;

where status is an integer between 0 and 255. This number is
returned to the parent via wait() as the exit status of the process.p () p
By convention, when a process exits with a status of zero that
means it didn't encounter any problems; when a process exit with
a non-zero status that means it did have problemsa non zero status that means it did have problems.

Following are some example programs that
demonstrate the use of fork(), exec(), wait(),demonstrate the use of fork(), exec(), wait(),
and exit():

status cstatus.c
status>>8，講義程式有誤

myshell cmyshell.c
newdir.c

Software Interrupt
The UNIX system provides a facility for sending and
receiving software interrupts, also called SIGNALS.
Signals are sent to a process when a predefined
condition happens.
The number of signals available is system
dependent. p
The signal name is defined in
/usr/include/sys/signal.h as a manifest constant.y g

Signal
Programs can respond to signals three different ways.

Ignore the signal. This means that the program will never be
informed of the signal no matter how many times it occurs Theinformed of the signal no matter how many times it occurs. The
only exception to this is the SIGKILL signal which can neither
be ignored nor caught.
A signal can be set to its default state which means that theA signal can be set to its default state, which means that the
process will be ended when it receives that signal. In addition, if
the process receives any of SIGQUIT, SIGILL, SIGIOT, SIGEMT,
SIGFPE, SIGBUS, SIGSEGV, or SIGSYS, the UNIX system willSIGFPE, SIGBUS, SIGSEGV, or SIGSYS, the UNIX system will
produce a core image (core dump), if possible, in the directory
where the process was executing when it received the program-
ending signal.g g
Catch the signal. When the signal occurs, the UNIX system will
transfer control to a previously defined subroutine where it can
respond to the signal as is appropriate for the program.respond to the signal as is appropriate for the program.

Signal

Related system calls
signalsignal
kill
alarmalarm

signal() system call
You define how you want to respond to a
signal with the signal() system call. The g g () y
prototype is:

#include <sys/signal.h>

int (* signal (signal_name, function))
int signal name;int signal_name;
int (* function)();

kill() system call

The UNIX system sends a signal to a process
when something happens, such as typing thewhen something happens, such as typing the
interrupt key on a terminal, or attempting to
execute an illegal instruction Signals areexecute an illegal instruction. Signals are
also sent to a process with the kill() system
call Its prototype is:call. Its prototype is:

int kill (process_id, signal_name)
int process it, signal name;int process_it, signal_name;

alarm() system call
Every process has an alarm clock stored in its
system-data segment. When the alarm goes off,
i l SIGALRM i t t th lli Asignal SIGALRM is sent to the calling process. A

child inherits its parent's alarm clock value, but the
actual clock isn't sharedactual clock isn t shared.
The alarm clock remains set across an exec. The
prototype for alarm() is:p yp ()
unsigned int alarm(seconds)
unsigned int seconds;g ;

Check
timesup.cp

Basic Interprocess p
Communication

Pipes

Pipes are familiar to most UNIX users as a
shell facilityshell facility

who | sort | pr
Related system callsRelated system calls

pipe
dup

#include <stdio h>#include <stdio.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h># c ude sys/s a

int main()
{{

int fd;

fd = open("foo.bar",O_WRONLY | O_CREAT, S_IREAD | S_IWRITE);
if (fd == -1)

{
perror("foo.bar");
exit (1);
}

close(1); /* close standard output */
d (fd) /* fd ill b d li t d i t t d d t' l t */dup(fd); /* fd will be duplicated into standard out's slot */
close(fd); /* close the extra slot */
printf("Hello, world!\n"); /* should go to file foo.bar */
exit (0); /* exit() will close the files */exit (0); /* exit() will close the files */

}

Interprocess Communication

UNIX System V allows processes to
communicate with one another usingcommunicate with one another using

pipes,
messagesmessages,
semaphores,

d h dand shared memory.
This sections describes how to communicate
using pipes.

pipe() system call

The prototype for pipe() is:

int pipe (file_descriptors)
int file_descriptors[2];

where file_descriptors[2] is an array that pipe()
fills with a file

descriptor opened for reading, file_descriptor[0],
opened for writing, file_descriptor[1].

pipe() system call (Cont’d)

Related system calls
Read write close fcntlRead, write, close, fcntl

Check who_wc.c
It d t t i b t tIt demonstrates a one-way pipe between two
processes.
Thi i l h i l f hThis program implements the equivalent of the
shell command: who | wc -l
which will count the number of users logged in.

Advanced interprocessAdvanced interprocess
communication

Message system calls
(SYSTEM V)

Related system calls
msgget
msgsnd
msgrcv
msgctlmsgctl

To use message you start with msgget, which is
analogous to open. It takes a key, which must be aanalogous to open. It takes a key, which must be a
long integer, and returns an integer called the
queue-ID.
To check the queue:

ipcs, ipcrm msg 0

sender.c
#include <sys/ipc.h>
#include <sys/msg.h>

i ()main()
{

int msqid;int msqid;
char *buf="I enjoy the OS course very much.\n";

msqid = msgget(0x888 IPC CREAT|0660);msqid = msgget(0x888, IPC_CREAT|0660);

printf("To send %d bytes\n",strlen(buf));

msgsnd(msqid, buf, strlen(buf), 0); /* stick him on the queue */
printf("The sender has successfully sent the message\n");

}}

receiver.c
#include <sys/types h>#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

main()
{

key_t key;
int msqid;
char buf[255];

key = ftok("/home/beej/somefile", 'b');
msqid = msgget(0x888, IPC_CREAT|0660);

msgrcv(msqid, &buf,255, 0, 0);
printf("The receiver has successfully received the message.\n");

i tf("Th i % \ " b f)printf("The message is => %s\n", buf);
}

Shared memory
Related system calls

shmget
shmatshmat
shmdt
shmctl

The shared memory is called a segment.
A segment is first created outside the address space
of any process and then each process that wants toof any process, and then each process that wants to
access it executes a system call to map it into its
own address space.p
Subsequent access to the shared memory is via
normal instructions that store and fetch data.

#define PERMS 0666

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmid;
char *mesgptr;

i ()main()
{
shmid = shmget(SHMKEY,1000,PERMS|IPC_CREAT);

t (h *) h t(h id (h *)0 0)mesgptr = (char *)shmat(shmid,(char *)0,0);
strcpy(mesgptr,"test share memory");
shmdt(mesgptr);

}}

#define PERMS 0666

#include <stdio.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>

int shmid;
char *mesgptr;

i ()main()
{

shmid = shmget(SHMKEY,1000,0);
t (h *) h t(h id (h *)0 0)mesgptr = (char *)shmat(shmid,(char *)0,0);

printf("%s\n",mesgptr);
shmdt(mesgptr);

}}

File Status

The i-node data structure holds all the
information about a file except the file's nameinformation about a file except the file s name
and its contents.
Sometimes your programs need to use theSometimes your programs need to use the
information in the i-node structure to do some
j b Y thi i f ti ith thjob. You can access this information with the
stat() and fstat() system calls.

stat() and fstat() system calls
#include <sys/types.h>
#include <sys/stat.h>

int stat(file_name, stat_buf)
char *file name;_ ;
struct stat *stat_buf;

i t f t t(fil d i t t t b f)int fstat(file_descriptor, stat_buf)
int file_descriptor;
struct stat *stat buf;struct stat stat_buf;

Check stat.c

access() system call

To determine if a file is accessible to a
program, the access() system call may beprogram, the access() system call may be
used.
The prototype for the access() system call is:The prototype for the access() system call is:

int access(file_name, access_mode)
char *file name;char file_name;
int access_mode;

Miscellaneous System Calls /
Examples

Directories
A directory is simply a special file that contains (among other information) i-
number/filename pairs

S stem V DirectoriesSystem V Directories
A directory contains structures of type direct, defined in the include file
/usr/include/sys/dir.h. The include file /usr/include/sys/types.h must also
be included to define the types used by the structure. The directory
structure is:

#define DIRSIZ 14

struct direct {
ino_t d_ino;
char d name[DIRSIZ];_ [];

};
Check my_ls.c

