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1. (10pts) Please show that T is a linear transformation by finding a matrix that implements 

the mapping, where x1, x2, x3, and x4 are entries in vectors. 
T(x1, x2, x3, x4) = (0, x1+ x2, x2+x3, x3+ x4, 2x2-3x1). 

 
 
2. (10pts) Given the following vectors v1, v2 and v3. 

(a) Please find the value(s) of h for which the vector v3 is in Span{v1, v2}. 
(b) Please find the value(s) of h for which the vectors v1, v2 and v3 are linear independent. 
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3.  (10pts) Given the following matrix A and an echelon form of A.   
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(a) Please find a basis for the column space of A and a basis for the Null space of A 
(denoted as Null A). 

(b) What’s the value of the rank of A. What’s the dimension of Null A? 
 
 

4. (10pts) Given the following matrix B. Please find det(((B4)BT)-1). 
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5. (10 pts) Let  ⎥
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Please find a basis {u1, u2} for R2 such that P is the change-of coordinates matrix from 
the basis {u1, u2} to the basis {v1, v2}. 

 
6. (5 pts) Let C = [ cij ] be an n by n matrix and λ be an eigenvalue of C. Determine the 

relationship (> , ≥ , < , ≤  or = ) between |λ| and ||C||, where ||C|| = (∑∑
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7. (10 pts) Solve the initial value problem: 
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,  where x1(0) = 6 , and 2(0) 0x = . 

 
8. (15 pts) Consider the over-constrained linear system U =x y , where  
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   The least-squares solution of the above system is given by 1( )T TU U U−=x y . Provide 

the unit (i.e., 1=x ) least squares solution of the homogeneous system U = 0x . 

9. (20 pts) Let 1
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   Suppose orthonormal matrix H relates variables x and y by H=x y , through which 

quadratic form ( )P x  is transformed into another quadratic form 2 2
1 2( )Q ay by= +y  

with no cross-product term 1 2y y  in which a and b are constants.  

 (a) Find matrix H, and constants a and b.  

 (b) Find the maximum value of ( )P x  subject to 1=x .  

 (c) Find a unit vector at which the maximum is attained. 


